Orientalmotor

$\alpha_{\text {step }}$
AZ Series/

Motorized Actuator

 equipped with AZ Series

Thank you for purchasing an Oriental Motor product.
This Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.
1 Introduction
1 Before using the product 8
2 Operating manuals 9
2-1 Related operating manuals 9
2-2 How to use operating manuals. 9
3 Overview of the product. 11
4 Safety precautions 12
4-1 Graphical symbols on the driver's front panel 14
4-2 Warning indication (AC power input driver) 14
5 Precautions for use 15
2 AC power input type
1 System configuration 18
2 Preparation 19
2-1 Checking the product 19
2-2 How to identify the product model 19
2-3 Products possible to combine 19
2-4 Information about nameplate 20
2-5 Names and functions of parts 20
2-6 Indication of LEDs 22
3 Installation 23
3-1 Installation location 23
3-2 Installation method 23
4 Connection25
4-1 Connection example 25
4-2 Connecting the control power supply 26
4-3 Connecting the regeneration resistor 27
4-4 Connecting the main power supply 27
4-5 Grounding the driver 28
4-6 Connecting the EtherCAT communication cable. 29
4-7 Connecting the USB cable 29
4-8 Connecting the I/O signals 30
4-9 Noise elimination measures. 34
4-10 Conformity to the EMC Directive 36
5 Setting of node address 37
5-1 Setting method 37
6 Power removal function 38
6-1 Safety parameters 38
6-2 Notes when using the power removal function 39
6-3 I/O signals 39
6-4 Operation of power removal function 40
6-5 Example of use. 43
6-6 Verification testing of power removal function 44
6-7 Related functions 44
7 Inspection and maintenance 48
7-1 Inspection 48
7-2 Warranty 48
7-3 Disposal 48
8 Cables 49
8-1 Connection cable 49
8-2 I/O signal cable 51
9 Accessories 52
9-1 Pulse signal converter for noise immunity 52
9-2 Relay contact protection parts/circuits. 52
9-3 Regeneration resistor 52
3 DC power input type
1 System configuration 54
2 Preparation 55
2-1 Checking the product 55
2-2 How to identify the product model 55
2-3 Products possible to combine 55
2-4 Information about nameplate 56
2-5 Names and functions of parts 56
2-6 Indication of LEDs 58
3 Installation 59
3-1 Installation location 59
3-2 Installation method 59
4 Connection 61
4-1 Connection example 61
4-2 Connecting the control power supply 62
4-3 Connecting the main power supply and grounding 63
4-4 Connecting the EtherCAT communication cable 64
4-5 Connecting the USB cable 65
4-6 Connecting the I/O signals 65
4-7 Noise elimination measures 69
4-8 Conformity to the EMC Directive 71
5 Setting of node address 72
5-1 Setting method 72
6 Power removal function 73
6-1 Notes when using the power removal function 73
6-2 I/O signals 74
6-3 Operation of power removal function 74
6-4 Related functions 77
7 Inspection and maintenance 80
7-1 Inspection 80
7-2 Warranty 80
7-3 Disposal 80
8 Cables 81
8-1 Connection cable 81
8-2 I/O signal cable 85
9 Accessories 86
9-1 Pulse signal converter for noise immunity. 86
9-2 Relay contact protection parts/circuits. 86
4 EtherCAT communication
1 Guidance 89
2 Communications specifications 92
2-1 EtherCAT communication interface 92
2-2 CiA402 drive profile 92
2-3 EtherCAT state machine (ESM) 93
2-4 Process data object (PDO) 93
2-5 Service data object (SDO) 96
2-6 Synchronous mode of EtherCAT communication 97
2-7 Distributed clocks 97
2-8 Emergency message. 97
3 Drive profile 98
3-1 Drive state machine 98
3-2 Operation mode 101
3-3 Cyclic synchronous position mode (CSP) 101
3-4 Profile position mode (PP) 103
3-5 Cyclic synchronous velocity mode (CSV) 114
3-6 Profile velocity mode (PV) 117
3-7 Homing mode (HM) 120
4 Function 134
4-1 Touch probe 134
4-2 Resolution 137
4-3 Wrap function 138
4-4 Operating current and stop current 138
4-5 Maintenance commands 139
4-6 Assignment of I/O function. 140
5 Position coordinate management 151
5-1 Overview of position coordinate management 151
5-2 Position coordinate origin 155
5-3 Parameters related to ABZO sensor 156
5-4 Mechanism settings parameter. 157
5-5 Initial coordinate generation \& wrap coordinate parameter 158
6 Save of parameters 164
7 Object dictionary 165
7-1 Composition of the object dictionary 165
7-2 Objects of the CoE communication area 166
7-3 Objects of the profile area 171
7-4 Objects of the manufacturer-specific area. 181
5 Object list
1 Objects of the CoE communication area 187
2 Objects of the profile area 189
3 Objects of the manufacturer-specific area 191
6 Troubleshooting
1 Alarms 204
1-1 Alarm reset. 204
1-2 Alarm history 204
1-3 Generation condition of alarms. 204
1-4 Alarm list 205
1-5 Timing chart 211
2 Information 213
2-1 Information history 215
2-2 Information list 215
3 Troubleshooting and remedial actions 219
7 Test operation using pulses
1 To execute operation by inputting pulses 222
1-1 Operation flow. 222
8 Reference materials
1 Timing chart 224
2 Specifications 225
2-1 General specifications 225
2-2 Product specifications 226
3 Regulations and standards 228
3-1 UL Standards 228
3-2 EU Directives. 228
3-3 Functional safety (AC power input driver only) 229
3-4 Republic of Korea, Radio Waves Act 229
3-5 RoHS Directive. 229

1 Introduction

 operating manuals.

Table of contents

1 Before using the product 8
2 Operating manuals 9
2-1 Related operating manuals 9
2-2 How to use operating manuals9
3 Overview of the product 11
4 Safety precautions 12
4-1 Graphical symbols on the driver's front panel. 14
4-2 Warning indication (AC power input driver) 14
5 Precautions for use 15

1 Before using the product

Only qualified personnel of electrical and mechanical engineering should work with the product.
Use the product correctly after thoroughly reading the section "4 Safety precautions" on p.12. In addition, be sure to observe the contents described in warning, caution, and note in this manual.
The product described in this manual is designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose. Oriental Motor Co., Ltd. is not responsible for any compensation for damage caused through failure to observe this warning.

2 Operating manuals

2-1 Related operating manuals

For operating manuals, contact your nearest Oriental Motor sales office or download from Oriental Motor Website Download Page.

Operating manual name	Included or not included with product	
AZ Series/Motorized Actuator equipped with AZ Series EtherCAT Drive Profile Compatible USER MANUAL (this document)	Not included	
AZ Series/Motorized Actuator equipped with AZ Series OPERATING MANUAL Function Edition	Not included	
APPENDIX UL Standards for AZ Series	Not included	
Read the following operating manuals for motors and motorized actuators.		
Operating manual name	Included or not included with product	
OPERATING MANUAL Motor Edition	Not included	
OPERATING MANUAL Actuator Edition	Included	
Motorized Actuator Function Setting Edition	Not included	

2-2 How to use operating manuals

To use the product, read this manual together with the AZ Series OPERATING MANUAL Function Edition.
This manual describes contents specific to the EtherCAT Drive Profile Compatible driver, and the AZ Series OPERATING MANUAL Function Edition describes contents common to the AZ Series products. Refer to the AZ Series OPERATING MANUAL Function Edition for the contents not included in this manual.
Reference destinations are indicated according to the flow of use.

How to read reference destinations

The title name of the operating manual is described in the reference destination.
memo The title number described in the reference destination may be changed. Use the title name when checking the reference destination.

About notation of objects

In this manual, the index number is described in parentheses () after the object name. Example: Controlword (6040h)

3 Overview of the product

The AZ Series EtherCAT Drive Profile Compatible driver is the dedicated driver for the $\mathbf{A Z}$ Series products.

Lineup

Two types of the AZ Series EtherCAT Drive Profile Compatible drivers are available: AC power input type and DC power input type.

Setting methods of parameters

Parameters can be set via EtherCAT communication or using the MEXE02.
This manual describes how to set parameters via EtherCAT communication.

Equipped with power removal function

The power removal function is a function that stops supplying the power to the motor by the hardware. The power removal function is assumed to be used to prevent unexpected starting of the moving parts of equipment when an operator works inside the operating range of the moving parts.

- Providing the ESI file

The ESI file (EtherCAT Slave Information file) is the one that describes the specific information of the EtherCAT slave products in XML format. By importing the ESI file to the EtherCAT Configration Tool of the PLC (programmable controller), the settings of EtherCAT communication can be performed before you receive the driver. For details, contact your nearest Oriental Motor sales office.

4 Safety precautions

The precautions described below are intended to ensure the safe and correct use of the product, and to prevent the customer and others from exposure to the risk of injury. Use the product only after carefully reading and fully understanding these instructions.

Note	Handling the product without observing the instructions that accompany a "WARNING" symbol may result in serious injury or death.
The items under this heading contain important handling instructions that the user	
should observe to ensure the safe use of the product.	
symbol may resulut in injury or property dame instructions that accompany a "CAUTION"	

Common to AC power input driver and DC power input driver

General

- Do not use the driver in explosive or corrosive environments, in the presence of flammable gases, in places subjected to splashing water, or near combustibles. Doing so may result in fire, electric shock, or injury.
- Assign qualified personnel to the task of installing, wiring, operating/controlling, inspecting, and troubleshooting the driver. Failure to do so may result in fire, electric shock, injury, or damage to equipment.
- Do not transport, install, connect, or inspect the driver while the power is supplied. Doing so may result in electric shock.
- Do not touch the driver while the power is supplied. Doing so may result in fire or electric shock.
- Take measures to keep the moving part in position if the product is used in vertical operations such as elevating equipment. Failure to do so may result in injury or damage to equipment.
- When an alarm is generated in the driver (any of the driver's protective functions is triggered), remove the cause before clearing the alarm (protective function). Continuing the operation without removing the cause of the problem may cause malfunction of the motor and the driver, leading to injury or damage to equipment.

Installation

- Install the driver inside an enclosure. Failure to do so may result in electric shock or injury.
- The driver is Class I equipment. When installing the driver, install it inside an enclosure so that it is out of the direct reach of users. Be sure to ground if users can touch it. Failure to do so may result in electric shock.

Connection

- Always keep the power supply voltage of the driver within the specified range. Failure to do so may result in fire or electric shock.
- Connect the product securely according to the wiring diagram. Failure to do so may result in fire or electric shock.
- Do not forcibly bend, pull, or pinch the cable. Doing so may result in fire or electric shock.

Operation

- Turn off the main power supply and the control power supply in the event of a power failure. Failure to do so may result in injury or damage to equipment.
- Do not remove the motor excitation during operation. Doing so may cause the motor to stop and lose the holding force, resulting in injury or damage to equipment.

Repair, disassembly, and modification

- Do not disassemble or modify the driver. Doing so may result in injury or damage to equipment.

AC power input driver

General

- Do not touch the terminals indicated $\widehat{\Delta}$ signs on the driver's front panel while the power is supplied because high voltage is applied. Doing so may result in fire or electric shock.

Inspection and maintenance

- Do not touch the connection terminals of the driver immediately after turning off the main power supply and the control power supply. Before performing connection or inspection, turn off the main power supply and the control power supply, and check the CHARGE LED has been turned off. Residual voltage may cause electric shock.

\triangle CAUTION

Common to AC power input driver and DC power input driver

General

- Do not use the driver beyond its specifications. Doing so may result in electric shock, injury, or damage to equipment.
- Keep your fingers and objects out of the openings in the driver. Failure to do so may result in fire, electric shock, or injury.
- Do not touch the driver during operation or immediately after stopping. Doing so may result in a skin burn(s).
- Do not forcibly bend or pull the cable that is connected to the driver. Doing so may result in damage.

Installation

- Keep the area around the driver free of combustible materials. Failure to do so may result in fire or a skin burn(s).
- Do not leave anything around the driver that would obstruct ventilation. Doing so may result in damage to equipment.

Operation

- Use a motor and a driver only in the specified combination. An incorrect combination may cause a fire.
- Provide an emergency stop device or emergency stop circuit external to the equipment so that the entire equipment will operate safely in the event of a system failure or malfunction. Failure to do so may result in injury.
- Before turning on the main power supply and the control power supply, turn all input signals to the driver to OFF. Failure to do so may result in injury or damage to equipment.
- When moving the moving part manually, put the motor into a non-excitation state. Continuing the work while the motor is in an excitation state may result in injury.
- When an abnormal condition has occurred, immediately stop operation to turn off the main power supply and the control power supply. Failure to do so may result in fire, electrical shock, or injury.
- Take measures against static electricity when operating the switches of the driver. Failure to do so may result in the driver malfunction or damage to equipment.

Inspection and maintenance

- Do not touch the terminals while conducting the insulation resistance measurement or the dielectric strength test. Doing so may result in electric shock.

AC power input driver

Operation

- For the control power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock.

DC power input driver

Operation

- For the main power supply and the control power supply, use a DC power supply with reinforced insulation on its primary and secondary sides. Failure to do so may result in electric shock.

4-1 Graphical symbols on the driver's front panel

1

This is the Protective Earth Terminal. Be sure to ground because improper grounding may result in electric shock.

A high voltage is applied to the motor connector (CN3) and the main power supply input terminals (CN4). Do not touch them while the power is supplied. Doing so may result in fire or electric shock. (AC power input driver)

4-2 Warning indication (AC power input driver)

A warning about handling precautions is described on the driver. Be sure to observe the description contents when handling the product.

Electrical hazard warning label

Material: PET

5 Precautions for use

This chapter covers restrictions and requirements the user should consider when using the product.

Common to AC power input driver and DC power input driver

- Be sure to use our cable to connect the motor and the driver.

Check the cable models on p. 49 (AC power input driver) or p. 81 (DC power input driver).

- When conducting the insulation resistance measurement or the dielectric strength test, be sure to separate the connection between the motor and the driver.
Conducting the insulation resistance measurement or dielectric strength test with the motor and the driver connected may result in damage to the product.
- Note on connecting a power supply whose positive terminal is grounded

The USB communication connector, CN5, CN6, and CN7 connectors on the driver are not electrically insulated. When grounding the positive terminal of the power supply, do not connect any equipment (PC, etc.) whose negative terminal is grounded. Doing so may cause the driver and this equipment to short, damaging both. When connecting, do not ground equipment.

- Saving data to the non-volatile memory

Do not turn off the control power supply while writing the data to the non-volatile memory, and also do not turn off for 5 seconds after the completion of writing the data. Doing so may abort writing the data and cause an alarm of EEPROM error to generate. The non-volatile memory can be rewritten approximately 100,000 times.

- Noise elimination measures

Refer to p. 34 (AC power input driver) or p. 69 (DC power input driver) for the noise elimination measures.

- AC power input driver

- Preventing leakage current

Stray capacitance exists between the driver's current-carrying line and other current-carrying lines, the earth and the motor, respectively. A high-frequency current may leak out through such capacitance, having a detrimental effect on the surrounding equipment. The actual leakage current depends on the driver's switching frequency, the length of wiring between the driver and the motor, and so on. When installing an earth leakage breaker, use a product offering resistance against high frequency current such as the one specified below.
Mitsubishi Electric Corporation: NV series

- If vertical drive (gravitational operation) such as elevator applications is performed or if sudden startstop operation of a large inertial load is repeated frequently, connect our regeneration resistor RGB100.
An alarm of overvoltage may be detected depending on the operating condition of the motor. When the alarm of overvoltage has been detected, reconsider the operating condition or use our regeneration resistor RGB100. Refer to p. 27 for the connection method.

This part explains contents specific to the AC power input type driver.

Table of contents

1 System configuration. 18
2 Preparation 19
2-1 Checking the product 19
2-2 How to identify the product model 19
2-3 Products possible to combine 19
2-4 Information about nameplate 20
2-5 Names and functions of parts 20
2-6 Indication of LEDs 22
3 Installation 23
3-1 Installation location 23
3-2 Installation method 23
4 Connection 25
4-1 Connection example 25
4-2 Connecting the control power supply 26
4-3 Connecting the regeneration resistor 27
4-4 Connecting the main power supply 27
4-5 Grounding the driver. 28
4-6 Connecting the EtherCAT communication cable 29
4-7 Connecting the USB cable 29
4-8 Connecting the I/O signals 30
4-9 Noise elimination measures 34
4-10 Conformity to the EMC Directive 36
5 Setting of node address 37
5-1 Setting method 37
6 Power removal function 38
6-1 Safety parameters. 38
6-2 Notes when using the power removal function 39
6-3 I/O signals 39
6-4 Operation of power removal function. 40
6-5 Example of use 43
6-6 Verification testing of power removal function 44
6-7 Related functions. 44
7 Inspection and maintenance 48
7-1 Inspection 48
7-2 Warranty 48
7-3 Disposal 48
8 Cables 49
8-1 Connection cable. 49
8-2 I/O signal cable51
9 Accessories 52
9-1 Pulse signal converter for noise immunity 52
9-2 Relay contact protection parts/circuits. 52
9-3 Regeneration resistor 52

1 System configuration

The figure shows models for the electromagnetic brake type with single-phase 200 to 240 VAC input.

* Connect when using direct I/O or sensors.

2 Preparation

This chapter explains the items you should check, as well as names and functions of each part.

2-1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product.

- Driver \qquad 1 unit
- CN1 connector (14 pins) \qquad 1 pc.
- CN4 connector (5 pins) 1 pc.
- CN7 connector (24 pins) 1 pc.
- Connector lever \qquad 1 pc. (for CN4 connector)
- Instructions and Precautions for Safe Use. . 1 copy

Included connector model

Type	Part number	Manufacturer
CN1 connector	DFMC1,5/7-ST-3,5-LR	PHOENIX CONTACT GmbH \& Co. KG
CN4 connector	05JFAT-SAXGDK-H5.0	J.S.T. Mfg. Co., Ltd.
CN7 connector	DFMC1,5/12-ST-3,5	PHOENIX CONTACT GmbH \& Co. KG

2-2 How to identify the product model

Check the model name of the driver against the number shown on the nameplate. Refer to p .20 for how to identify the nameplate.

$\frac{\text { AZD }}{1}-\frac{C}{2} \frac{\text { ED }}{3}$

1	Series	AZD: AZ Series driver
2	Power supply input	A: Single-phase 100-120 VAC C: Single-phase/Three-phase 200-240 VAC
3	Network type	ED: EtherCAT Drive Profile Compatible

2-3 Products possible to combine

Products with which the driver can be combined are listed below. Check the model name of the product with the nameplate.

Power supply type	Product type	Applicable series	Model name representing series name *1	Example of model name
$A C$ input	Stepping motor	AZ Series	AZM	AZM46AC AZM66AC-TS10
	Motorized actuator	EAS Series *2	EASM	EASM4NXD005AZAC
		EAC Series *2	EACM	EACM4RWE15AZMC
		EZS Series *2	EZSM	EZSM6D005AZAC
		EZSH Series *2	EZSHM	EZSHM6H020AZAC
		DGII Series	$\begin{aligned} & \text { DGM } \\ & \text { DGB } \end{aligned}$	DGM85R-AZAC DGB85R12-AZACR
		L Series	LM	LM4F500AZMC-10

[^0]
2-4 Information about nameplate

The figure shows an example.

memo The position describing the information may vary depending on the product.

2-5 Names and functions of parts
The figure shows the AZD-CED.

Type	Name	Sign	Description
LED	CHARGE LED (Red)	CHARGE	This LED is lit while the main power supply is turned on. After the main power has been turned off, the LED will turn off once the residual voltage in the driver drops to a safe level.
	PWR/ALM LED (Green/Red)	PWR/ALM	- This LED is lit in green while the control power supply is turned on. - If an alarm (protective function) is generated, the LED will blink in red. - If the power removal function (p.38) is triggered, the LED will blink in green. - If information is generated, the LED will simultaneously blink in green and red twice. (Green and red colors may overlap and it may be visible to orange.)
	RUN LED (Green)	RUN	This LED indicates the status of EtherCAT communication.
	ERR LED (Red)	ERR	This LED blinks when an error occurred via EtherCAT communication.
	L/A LEDs (Green)	L/A	These LEDs indicate the LINK/ACT status of EtherCAT communication.
Switch	Node address setting switches	$\begin{aligned} & \text { ECAT ID } \times 10 \\ & \text { ECAT ID } \times 1 \end{aligned}$	Used to set the node address. Factory setting: $00(\times 10: 0, \times 1: 0)$
	HOME PRESET switch	HOME PRESET	Used to set the starting position (home) when positioning operation is performed.
Connector	Encoder connector (CN2)	ENCODER	Connects the encoder.
	Motor connector (CN3)	MOTOR	Connects the motor.
	USB communication connector	$\stackrel{\square}{\square}$	Connects a PC in which the MEXEO2 has been installed. (USB2.0 mini-B port)
	EtherCAT communication connector (CN5)	ECAT IN	Connects with the upper EtherCAT communication compatible product.
	EtherCATcommunication connector (CN6)	ECAT OUT	Connects with the EtherCAT communication compatible product of the following node address.
	I/O signal connector (CN7)	I/O	Connects when using direct I/O or sensors.
Terminal	Control power supply input terminals (CN1)	+24V, 0 V	Connects the control power supply.
	Electromagnetic brake terminals (CN1)	MB1, MB2	Connects the lead wires from the electromagnetic brake.
	Regeneration resistor thermal input terminals (CN1)	TH1, TH2	Connects our regeneration resistor RGB100. If the regeneration resistor RGB100 is not connected, short the TH1 and TH2 terminals.
	Power removal signal input terminals (CN1)	HWTO1+, HWTO1- HWTO2+, HWTO2-	Connects the external device.
	Power removal monitor output terminals (CN1)	EDM + , EDM-	
	Regeneration resistor terminals (CN4)	RG1, RG2	Connects our regeneration resistor RGB100.
	Main power supply input terminals (CN4)	$\begin{gathered} \mathrm{L}, \mathrm{~N}, \mathrm{NC} \\ \mathrm{~L} 1, \mathrm{~L} 2, \mathrm{NC} \\ \mathrm{~L} 1, \mathrm{~L}, \mathrm{~L} 3 \end{gathered}$	Connects the main power supply.
	Protective Earth Terminals	(1)	Ground using a grounding wire of AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$).

2-6 Indication of LEDs

LED indication related to driver status

PWR/ALM LED status		Description	
Green	Red		
Unlit	Unlit	The control power supply is not turned on.	
Lit	Unlit	The control power supply is turned on.	
Blinking	Un alarm is being generated. Details about the generated alarm can be checked by counting the number of times the LED blinks. The LED is lit in green when the alarm is reset.		
Unlit	The power removal function has been activated. After the power removal function is released, the LED is lit in green when the ETO-CLR input is turned ON.		
Blinking twice at the same time *	- Information is being generated. The LED is lit in green when the information is cleared. • Remote operation is being executed with the MEXEO2. The LED is lit in green when remote operation is complete.		
Blinking at the same time *	The interlock was released by holding down the HOME PRESET switch. The LED is lit in green when the time set in the "Extended input (EXT-IN) interlock releasing time (4972h)" is elapsed.		
Lit at the same time *	The input signal assigned to the HOME PRESET switch is being executed. The LED is lit in green when it is complete.		
Repeating "Green \rightarrow Red \rightarrow Simultaneously lit \rightarrow Unlit"	This is the driver simulation mode.		

* Green and red colors may overlap and it may be visible to orange.

LED indication related to EtherCAT communication status

LED indicator	LED status	Description
RUN (Green)	Unlit	Initialization state
	Blinking *	Pre-Operational state
	Single flash *	Safe-Operational state
	Lit	Operational state (normal condition)
ERR (Red)	Unlit	No communication error
	Blinking *	Communication setting error
	Single flash *	Communication data error
	Double flash *	Communication watchdog timeout
L/A (Green)	Unlit	No link
	Lit	Link establishment
	Flickering *	Operation in progress after link establishment

* The timing to blink the LED is as follows. (unit: ms)

3 Installation

This chapter explains the installation location and installation method of the driver.

3-1 Installation location

The driver is designed and manufactured to be incorporated in equipment. Install it in a well-ventilated location that provides easy access for inspection. The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature: 0 to $+55^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$ (non-freezing)
- Operating ambient humidity: 85% or less (non-condensing)
- Area free of explosive atmosphere or toxic gas (such as sulfuric gas) or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets), or other liquids
- Area free of excessive salt
- Area not subject to continuous vibrations or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- Up to $1,000 \mathrm{~m}(3,300 \mathrm{ft}$.) above sea level

3-2 Installation method

The driver is designed so that heat is dissipated via air convection and conduction through the enclosure. Install the driver to a flat metal plate (*) offering high heat conductivity. When installing drivers, provide clearances of at least 25 mm (0.98 in .) in the horizontal and vertical directions between the driver and enclosure or other equipment within the enclosure.
When installing the driver, use two screws (M4, not included) to secure the driver through the mounting holes.

* Material: Aluminum, $200 \times 200 \times 2 \mathrm{~mm}(7.87 \times 7.87 \times 0.08 \mathrm{in}$.) or equivalent
- Install the driver inside an enclosure whose pollution degree is 2 or better environment, or whose degree of protection is IP54 minimum.
- Do not install any equipment that generates a large amount of heat or noise near the driver.
- Do not install the driver underneath the EtherCAT master or other equipment vulnerable to heat.
- If the ambient temperature of the driver exceeds $55^{\circ} \mathrm{C}$ ($131^{\circ} \mathrm{F}$), reconsider the ventilation condition such as providing forced cooling by using fans or creating spaces between the drivers.
- Be sure to install the driver vertically (in vertical position).

Unit: mm (in.)

- Dimensions

- Unit: mm (in.)
- Mass: 0.68 kg (1.5 lb.)

4 Connection

This chapter explains a connection example of a driver and a motor, connection methods of power supplies and the regeneration resistor RGB100, the grounding method, and others.
The installation and wiring methods in compliance with the EMC Directive as well as protection against noise are also explained.

- For protection against electric shock, do not turn on the power supply until the wiring is completed.
- A high voltage is applied to the motor connector (CN3) and the main power supply input terminals (CN4). Do not touch them while the power is on. Doing so may result in fire or electric shock.

4-1 Connection example

The figure shows models for the electromagnetic brake type with single-phase 200 to 240 VAC input.

*1 Purchase it separately.
*2 Use the cable for encoder when the length of the encoder cable of motor is not enough.
Note - Connect the connectors securely. Insecure connections may cause malfunction or damage to the motor or the driver.

- Before connecting or disconnecting a connector, turn off the main power supply and the control power supply, and check the CHARGE LED has been turned off. Residual voltage may cause electric shock.
- The lead wires of the "cable for electromagnetic brake" have polarities, so connect them in the correct polarities. If the lead wires are connected with their polarities reversed, the electromagnetic brake will not operate properly.
- Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cable. Doing so may cause malfunction due to noise.
- Keep 20 m (65.6 ft .) or less for the wiring distance between the motor and the driver. To extend more than 20 m (65.6 ft .) may result in the driver heat generation or increase of the electrical noise emitted from the product.
memo - A control power supply is required with or without an electromagnetic brake. Be sure to connect it.
- When pulling off the motor cable, do so while pressing the latches on the connector with fingers.
- When installing the motor on a moving part, use a flexible cable offering excellent flexibility. Refer to p. 49 for the model name.

■ Electrical wire size

Connector	Terminal symbol	Recommended wire size
CN1	$+24 \mathrm{~V}, \mathrm{OV}, \mathrm{MB1}, \mathrm{MB2}, \mathrm{TH} 1, \mathrm{TH} 2$, HWTO1+, HWTO1-, HWTO2+, HWTO2-, EDM,+ EDM-	Stranded wire or solid wire AWG24 to $16\left(0.2\right.$ to $\left.1.25 \mathrm{~mm}^{2}\right)$
CN4	RG1, RG2, L, N, L1, L2, L3	Stranded wire or solid wire AWG18 to $14\left(0.75\right.$ to $\left.2.0 \mathrm{~mm}^{2}\right)$
CN7	-	Stranded wire or solid wire AWG24 to $16\left(0.2\right.$ to $\left.1.25 \mathrm{~mm}^{2}\right)$

4-2 Connecting the control power supply

- Wiring method of CN1 connector
- Applicable lead wire: AWG24 to 16 (0.2 to $1.25 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation: 10 mm (0.39 in .)

1. Strip the insulation of the lead wire.
2. Insert the lead wire while pushing the button of the orange color with a slotted screwdriver.
3. After having inserted, release the button to secure the lead wire.

■ Power supply current capacity

Input power supply voltage	Power supply current capacity	
	Without electromagnetic brake	With electromagnetic brake
$24 \mathrm{VDC} \pm 5 \% * 1$	0.25 A	$0.5 \mathrm{~A} * 2$

*1 When an electromagnetic brake motor is used, if the wiring distance between the motor and the driver is extended to 20 m (65.6 ft .) using our cable, the input voltage is $24 \mathrm{VDC} \pm 4 \%$.
*2 The AZM46 type is 0.33 A.

■ Pin assignment

There are two terminals for 0 V : One for control power supply and the other is for internal connection. Check each position in the figure and the table shown.

Sign	
$+24 \mathrm{~V}, 0 \mathrm{O}$ *1	Connects the control power supply.
MB1, MB2	Connects the lead wires from the electromagnetic brake. MB1: Electromagnetic brake- (Black) MB2: Electromagnetic brake+ (White)
TH1, TH2	Connects the signal lines of our regeneration resistor RGB100. If the regeneration resistor is not used, connect a jumper wire between the terminals to short-circuit as shown in the figure.
HWTO1+, HWTO1- HWTO2+, HWTO2-	Connects the external device. When using the power removal function, remove the jumper wires and connect the external device. If the power removal function is not used, connect jumper wires between the terminals to short-circuit as shown in the figure.
EDM+, EDM-	Connects the external device. If the power removal function is not used, do not connect anything.
$+\mathrm{V}, 0 \mathrm{OV}$ *2	These are for internal connection. Do not connect anything. If the power removal function is not used, connect a jumper wire between the terminals to short-circuit as shown in the figure.

4-3 Connecting the regeneration resistor

If vertical drive (gravitational operation) such as elevating applications is performed or if sudden start-stop operation of a large inertial is repeated frequently, connect our regeneration resistor RGB100.

- The two thin lead wires (AWG22: $0.3 \mathrm{~mm}^{2}$) of the regeneration resistor are the thermostat outputs. Connect them to the TH1 and TH2 using the CN1 connector.
- Regenerative current flows through the two thick lead wires (AWG18: $0.75 \mathrm{~mm}^{2}$) of the regeneration resistor. Connect them to the RG1 and RG2 using the CN4 connector.

Regeneration resistor

memo - When connecting the regeneration resistor, be sure to remove the jumper wire from the CN1 connector.

- If the allowable power consumption of the regeneration resistor exceeds the allowable level, the thermostat will be triggered to generate an alarm of regeneration resistor overheat. When an alarm of regeneration resistor overheat is generated, turn off the main power supply and check the error content.
- Regeneration resistor specifications

Model	RGB100
Allowable power consumption	Continuous regenerative power: 50 W * Instantaneous regenerative power: 600 W
Resistance value	150Ω
Thermostat operating temperature	Operation: Opens at $150 \pm 7^{\circ} \mathrm{C}\left(302 \pm 12.6^{\circ} \mathrm{F}\right)$ Reset: Closes at $145 \pm 12^{\circ} \mathrm{C}\left(293 \pm 21.6^{\circ} \mathrm{F}\right)$ [normally closed]
Thermostat electrical rating	120 VAC 4 A or 30 VDC 4 A (minimum current 5 mA$)$

* Install the regeneration resistor in a location where heat dissipation capacity equivalent to a level achieved with a aluminum plate $[350 \times 350 \times 3 \mathrm{~mm}(13.78 \times 13.78 \times 0.12 \mathrm{in}$. $)]$ is ensured.

4-4 Connecting the main power supply

The connecting method varies depending on the power supply specification.

Three-phase 200-240 V -15 \% to +6 \% $50 / 60 \mathrm{~Hz}$

Wiring method of CN4 connector

- Applicable lead wire: AWG18 to 14 (0.75 to $2.0 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation: 9 mm (0.35 in .)

1. Strip the insulation of the lead wire.
2. Insert the connector lever.
3. Insert the lead wire while pushing down the connector lever.

■ Power supply current capacity
The current capacity of the power supply varies depending on the product combined.
Check the current capacity in reference to the equipped motor model when using the EAS Series, EAC Series, EZS Series, or EZSH Series.

$$
\text { - Single-phase 100-120 VAC • Single-phase 200-240 VAC } \bullet \text { Three-phase 200-240 VAC }
$$

Model	Power supply current capacity
AZM46	2.7 A or more
AZM48	2.7 A or more
AZM66	3.8 A or more
AZM69	5.4 A or more
AZM98	5.5 A or more
AZM91 1	6.4 A or more
DGB85	2.7 A or more
DGB130	3.8 A or more
DGM85	2.7 A or more
DGM130	3.8 A or more
DGM200	6.4 A or more
LM2	3.8 A or more
LM4	3.8 A or more

Model	Power supply current capacity
AZM46	1.7 A or more
AZM48	1.6 A or more
AZM66	2.3 A or more
AZM69	3.3 A or more
AZM98	3.3 A or more
AZM911	3.9 A or more
DGB85	1.7 A or more
DGB130	2.3 A or more
DGM85	1.7 A or more
DGM130	2.3 A or more
DGM200	3.9 A or more
LM2	2.3 A or more
LM4	2.3 A or more

Model	Power supply current capacity
AZM46	1.0 A or more
AZM48	1.0 A or more
AZM66	1.4 A or more
AZM69	2.0 A or more
AZM98	2.0 A or more
AZM911	2.3 A or more
DGB85	1.0 A or more
DGB130	1.4 A or more
DGM85	1.0 A or more
DGM130	1.4 A or more
DGM200	2.3 A or more
LM2	1.4 A or more
LM4	1.4 A or more

4-5 Grounding the driver

Two Protective Earth Terminals (screw size: M4) are provided on the driver. Be sure to ground one of the Protective Earth Terminals. Either of the two Protective Earth Terminals can be used for grounding the driver.

- Grounding wire: AWG16 to 14 (1.25 to $2.0 \mathrm{~mm}^{2}$)
- Tightening torque: 1.2 N.m (170 oz-in)

Connect the grounding wire of the "cable for motor" to the other terminal to ground the motor.
Do not share the grounding wire with a welder or any other power equipment.
When grounding the Protective Earth Terminal, use a round terminal and secure the grounding point near the driver.

Protective Earth Terminals (Ground either of the terminals.)

4-6 Connecting the EtherCAT communication cable

Connect the EtherCAT master and the CN5 connector (ECAT IN) on the driver using the EtherCAT communication cable.
Be sure to connect from the CN6 connector (ECAT OUT) to the CN5 connector (ECAT IN) when linking drivers.

Pin assignment

Signal name	Description
TXP	Transmitted data+
TXN	Transmitted data-
RXP	Received data+
N.C.	-
N.C.	-
RXN	Received data-
N.C.	-
N.C.	-

4-7 Connecting the USB cable

Using a USB cable of the following specification, connect a PC in which the MEXE02 has been installed to the USB communication connector.

Specification	USB2.0 (full speed)
Cable	Length: $3 \mathrm{~m}(9.8 \mathrm{ft}$.$) or less$ Shape: A to mini B

memo - Connect the driver and PC directly using the USB cable.

- In large electrically noisy environments, use the USB cable with a ferrite core or install a ferrite core to the USB cable.

4-8 Connecting the I/O signals

Connect when using direct I/O or sensors.
■ Wiring method of CN7 connector

- Applicable lead wire: AWG24 to 16 (0.2 to $1.25 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation: 10 mm (0.39 in .)

1. Strip the insulation of the lead wire.
2. Insert the lead wire while pushing the button of the orange color with a slotted screwdriver.
3. After having inserted, release the button to secure the lead wire.

memo Be certain the I/O signal cable is as short as possible. The maximum input frequency will decrease as the cable length increases.

Pin assignment

[^1]
Connection example with a current sink output circuit

- When the pulse input circuit of the driver is of line driver type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.

[^2]memo - Use input signals at 24 VDC .

- Use output signals at 12 to $24 \mathrm{VDC}, 10 \mathrm{~mA}$ or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 V maximum.
- When the pulse input circuit of the driver is of open collector type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.
memo Use the CW [PLS] input and CCW [DIR] input at 5 to 24 VDC . When using signals at 24 VDC , connect an external resistor R 1 ($1.2 \mathrm{k} \Omega$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more). When using signals at 5 VDC , apply the voltage directly.

When the voltage of pulse input signals is 5 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

When the voltage of pulse input signals is 24 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

Connection example with a current source output circuit

- When the pulse input circuit of the driver is of line driver type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.

[^3]memo - Use input signals at 24 VDC .

- Use output signals at 12 to $24 \mathrm{VDC}, 10 \mathrm{~mA}$ or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 V maximum.
- When the pulse input circuit of the driver is of open collector type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.
Use the CW [PLS] input and CCW [DIR] input at 5 to 24 VDC . When using signals at 24 VDC , connect an external resistor R1 ($1.2 \mathrm{k} \Omega$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more). When using signals at 5 VDC , apply the voltage directly.

When the voltage of pulse input signals is 5 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

When the voltage of pulse input signals is 24 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

4-9 Noise elimination measures

There are two types of electrical noises: One is a noise to invade into the driver from the outside and cause the driver malfunction, and the other is a noise to emit from the driver and cause peripheral equipment malfunction. For the noise that is invaded from the outside, take measures to prevent the driver malfunction. It is needed to take adequate measures because signal lines are very likely to be affected by the noise.
For the noise that is emitted from the driver, take measures to suppress it.

Measures against electrical noise

There are the following three methods mainly to take measures against the electrical noise.

- Noise suppression
- When relays or electromagnetic switches are used, use noise filters or CR circuits to suppress surge generated by them.
- Use our connection cable when extending the wiring distance between the motor and the driver. Refer to p. 49 for the model name. This is effective in suppressing the electrical noise emitted from the motor.
- Cover the driver by a metal plate such as aluminum. This is effective in shielding the electrical noise emitted from the driver.

- Prevention of noise propagation

- Connect a noise filter to the power supply cable of the driver.
- Place the power lines, such as the motor and the power supply cables, keeping a distance of 200 mm (7.87 in.) or more from the signal lines, and also do not bundle them or wire them in parallel. If a power cable and a signal cable have to cross, cross them at a right angle.
- Use shielded twisted pair cables for power lines and signal lines.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Grounding multiple points will increase effect to block electrical noise because impedance on the grounding points is decreased. However, ground them so that a potential difference does not occur among the grounding points. I/O signal cable that includes a ground wire are provided in our product line. Refer to p. 51 for the model name.
- To ground a shielded cable, use a metal cable clamp that can maintain Shielded cable contact with the entire circumference of the shielded cable, and ground as near the product as possible.

- Suppression of effect by noise propagation

- Loop the noise propagated cable around a ferrite core. Doing so will prevent the propagated noise invades into the driver or emits from the driver. The frequency band in which an effect by the ferrite core can be seen is generally 1 MHz or more. Check the frequency characteristics of the ferrite core used. When increasing the effect of noise attenuation by the ferrite core, loop the cable a lot.
- Change the transmission method of the pulse signal to the line driver type in order to prevent noise effects. If the pulse signal of the EtherCAT master is of the open collector type, use our pulse signal converter for noise immunity. Refer to p. 52 for the model name.

- Noise suppression product

- Noise filter
- Connect the following noise filter (or equivalent) to the power line. Doing so will prevent the propagated noise through the power line. Install the noise filter as close to the driver as possible.

Manufacturer	Single-phase 100-120 VAC Single-phase 200-240 VAC	Three-phase 200-240 VAC
SOSHIN ELECTRIC CO., LTD.	HF2010A-UPF	HF3010C-SZA
Schaffner EMC	FN2070-10-06	FN3025HP-10-71

- Use the AWG18 ($0.75 \mathrm{~mm}^{2}$) or thicker wire for the input and output cables of the noise filter, and secure firmly using a cable clamp or others so that the cable does not come off the enclosure.
- Place the input cable as far apart as possible from the output cable, and do not wire the cables in parallel. If the input and output cables are placed at a close distance or if they are wired in parallel, the noise in the enclosure affects the power cable through stray capacitance, and the noise suppressing effect will reduce.
- Connect the ground terminal of the noise filter to the grounding point, using as thick and short a wire as possible.
- When connecting a noise filter inside an enclosure, wire the input cable of the noise filter as short as possible. Wiring in long distance may reduce the noise suppressing effect.

■ Our noise suppression products

Check the model names on p. 51 and p. 52.

- I/O signal cable

This is a shielded cable for good noise immunity to connect the driver and the EtherCAT master. The ground wire useful to grounding is extracted from both ends of the cable. The EMC testing is conducted using our I/O signal cable.

- Pulse signal converter for noise immunity

This product converts a pulse signal, which is output from the open collector output, to a pulse signal for good noise immunity by outputting the pulse signal again from the differential output.

- Surge suppressor

This product is effective to suppress the surge which occurs in a relay contact part. Connect it when using a relay or electromagnetic switch. CR circuit for surge suppression and CR circuit module are provided.

4-10 Conformity to the EMC Directive

Effective measures must be taken against the EMI that the motor and the driver may give to adjacent control-system equipment, as well as the EMS of the motor and the driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and the driver to be compliant with the EMC Directive. Refer to p. 228 for the applicable standards.
Oriental Motor conducts EMC testing on its motors and drivers in accordance with "Example of installation and wiring." The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained next.

- Connecting the noise filter

In large electrically noisy environments, connect a noise filter. Refer to "Noise filter" on p. 35 for details.

- Connecting the control power supply

Use a power supply compliant with the EMC Directive for the control power supply.
Wire and ground the power supply over the shortest possible distance using a shielded cable.
Refer to "Prevention of noise propagation" on p. 35 for how to ground the shielded cable.

- Connecting the motor cable

Use our connection cable when extending the wiring distance between the motor and the driver. Refer to p. 49 for the model name.

- Connecting the signal cable

Refer to "Prevention of noise propagation" on p. 35 .

- Grounding method
- The cable used to ground the motor, the driver, and the noise filter must be as thick and short as possible so that no potential difference is generated.
- Choose a large, thick and uniformly conductive surface for the grounding point.
- When installing the motor and the driver, ground their Protective Earth Terminals. Refer to the p. 28 for the grounding method.
- Example of installation and wiring

\square is a ferrite core.
\perp symbol indicate the grounding.
\cdots is a shielded box.
* It is the cable in our products

Note The driver uses parts that are sensitive to electrostatic charge. Take measures against static electricity since static electricity may cause the driver to malfunction or suffer damage.

5 Setting of node address

This chapter explains how to set the node address.

5-1 Setting method

Set the node address using two node address setting switches (ECAT ID $\times 10, \times 1$).
The node address setting switches are hexadecimal number. Convert the node address from decimal to hexadecimal to set.
When connecting two or more EtherCAT communication compatible products, do not set duplicate node address.
Factory setting: $0(\times 10: 0, \times 1: 0)$

Setting range	Description
$0(00 \mathrm{~h})$	The setting of the EtherCAT master is enabled.
1 to 255 (1h to FFh)	The setting of the driver is enabled.

Note Be sure to turn off the control power supply of the driver before setting the switches. If the switches are set while the control power supply is in an on-state, the new setting will not be enabled.

6 Power removal function

The power removal function is a function that stops supplying the power to the motor by the hardware.
This function shuts off the drive signal of the inverter circuit that controls the motor current with two input channels (HWTO1 input, HWTO 2 input). This brings a shutoff state of the power supplying to the motor (power removal status). The power removal function is assumed to be used to prevent unexpected starting of the moving parts of equipment when an operator works inside the operating range of the moving parts.
when an operator works inside the operating range of the moving parts.

* Turning the HWTO1 input OFF causes the upper arm drive signal of the inverter circuit to shut off.

Turning the HWTO2 input OFF causes the lower arm drive signal of the inverter circuit to shut off.
Note Be sure to check the motor is in a standstill state before executing the power removal function. If the power removal function is executed while the motor is operated, it may cause damage to the motor, driver, or equipment.

6-1 Safety parameters

Item	Specifications
Safety integrity level	SIL 3 *
Average frequency of a dangerous failure per hour	PFH $=2.96 \times 10^{-9}[1 / \mathrm{h}]$
Hardware fault tolerance	HFT $=1$
Subsystem	Type A
Mission time	10 years
Response time	15 ms or less
Performance level	PL e (Category 3) *
Mean time to dangerous failure	MTTFd: High
Average diagnostic coverage	DC $_{\text {avg: }}$ Medium
Stop category	0 (IEC 60204-1)

* It is necessary to monitor the EDM output using an external device.

6-2 Notes when using the power removal function

- When the power removal function is used, be sure to conduct a risk assessment of equipment in advance and check that the safety requirements of the safety-related parts of a control system are satisfied.
- The design of the safety-related parts of a control system using the power removal function should be performed by qualified personnel who are trained in the relevant safety standards and understand the contents of this chapter.
- If the power removal function operates, the motor output shaft may rotate due to external forces (such as gravity on a vertical axis). To hold the motor output shaft in position, install an external brake mechanism or equivalent. The brake mechanism of the electromagnetic brake motor is used for the purpose to hold the position. Do not use the brake mechanism of the electromagnetic brake motor for braking the motor rotation. This may result in injury or damage to equipment.
- If the power removal function operates, the driver stops supplying the power to the motor. However, the power supplying to the driver is not shut off, and the driver is not performed electrical insulation either. Before performing maintenance or inspection, always turn off the driver power, and check the CHARGE LED is turned off. Failure to do so may result in electric shock.
- If the inverter circuit is failed, the motor output shaft may rotate up to 180 degrees in an electrical angle (3.6 degrees in a mechanical angle) even when the power removal function operates. Make sure this movement does not cause hazardous situations. Failure to do so may result in injury or damage to equipment.
- Connect the I/O signals related to the power removal function to an external device which conforms to the safety standard.
- Be sure to perform the verification testing of the power removal function when starting up or maintaining the equipment, or when replacing the driver. This may result in injury or damage to equipment. If the power removal function is used in an incorrect state such as incorrect wiring of I/O signals, the power removal function may not operate properly, causing hazardous situations.

6-3 I/O signals

HWTO1 input, HWTO2 input

The HWTO1 input and HWTO2 input are signals to operate the power removal function.
Note Provide individual contacts for operating the HWTO1 input and the HWTO2 input.

Specification

- Input voltage: $24 \mathrm{VDC} \pm 10 \%$

Safety input－off shot pulse for self－diagnosis of external device

If the safety output signal output from an external device includes the safety input－off shot pulse for self－diagnosis， use an external device which pulse width is 1 ms or less．If the OFF－time of the HWTO1 input or the HWTO2 input by the safety input－off shot pulse is 1 ms or less，the power removal function does not operate．

Driver status \quad Power removal status

EDM output

The EDM output is a signal to monitor a failure in the power removal function．
Note The EDM output is not an output signal to ensure the safety．Do not use the EDM output for any other purpose except for monitoring a failure．

Specifications

－Voltage： 30 VDC or less
－Current： 50 mA or less
－Output saturated voltage： 1.1 V max．

6－4 Operation of power removal function

■ Transition to power removal status

If both the HWTO1 and HWTO2 inputs are turned OFF，the driver transitions to the power removal status，and the power supplying to the motor is shut off by the hardware，causing the motor to put into a non－excitation state． In the power removal status，the status of the motor and driver will be as follows．［When the＂HWTO mode selection （4190h）＂is set to＂ 0 ：Alarm is not present（initial value）＂］
－The ETO－MON output is ON．
－The DCMD－RDY output，the READY output，the PLS－RDY output，and the MBC output are OFF．
－The PWR／ALM LED blinks in green．
－When an electromagnetic brake motor is used，the electromagnetic brake is in a state of holding the motor shaft．
Note－Be sure to check the motor is in a standstill state before executing the power removal function．If the power removal function is executed while the motor is operated，it may cause damage to the motor，driver，or equipment．
－It takes 15 ms maximum from when the HWTO1 and HWTO2 inputs are turned OFF until when the driver is in the power removal status．
－To transition to the power removal status，be sure to turn the HWTO1 and HWTO2 inputs OFF for at least 15 ms ．
－The ETO－MON output，the DCMD－RDY output，the READY output，the PLS－RDY output，the MBC output，the PWR／ALM LED，and the electromagnetic brake are not safety－related parts of a control system．

- Timing chart

* When executing the operation by inputting pulses.

Return from power removal status

If both the HWTO1 and the HWTO2 inputs are turned ON, the power removal status is released. At this time, the motor remains in a non-excitation state. To excite the motor, turn the ETO-CLR input ON in a state where the excitation command is input from the EtherCAT master. (initial value: Activate at ON edge). When the ETO-CLR input is turned ON, the status of the motor and driver will be as follows.

- The ETO-MON output is OFF.
- The DCMD-RDY output, the READY output, the PLS-RDY output, and the MBC output are ON.
- The PWR/ALM LED is lit in green.
- When an electromagnetic brake motor is used, the electromagnetic brake is in a state of releasing the motor shaft.

Note - Check the equipment is in a safe state before returning the driver from the power removal status.

- Even if either the HWTO1 input or the HWTO2 input is turned ON, the power removal status cannot be released.
- If the ON-time of the HWTO1 and HWTO2 inputs is less than 15 ms , the power removal status may not be released.
- When the power removal status is released, a shut-off state of supplying the power to the motor by the hardware is also released.
- The ETO-CLR input is not safety-related part of a control system.

- Timing chart

*1 When executing the operation by inputting pulses.
*2 It is the movement when the excitation command is input from the EtherCAT master while the ETO-CLR input is turned ON.

Detection for failure of the power removal function

Monitoring the input status of the HWTO1 and HWTO2 inputs and the output status of the EDM output relative to the inputs can detect the failure of the power removal function.
When the power removal function is properly operated, the combination of each signal is any of the following. Combinations other than the table indicate the power removal function of the driver is in a failure state.

HWTO1 input	HWTO2 input	EDM output
ON	ON	OFF
OFF	OFF	ON
ON	OFF	OFF
OFF	ON	OFF

If only one of the HWTO1 input and the HWTO2 input is ON or OFF, the external device or wiring has failed. Check the cause and take a measure immediately. At this time, the EDM output is in an OFF state and the motor puts into a non-excitation state.

Note - Do not release the power removal function when the EDM output is in an OFF state.

- If the driver or external device is failed or an error in wirings occurs, check the cause and take a measure immediately.
- The power removal function of the driver is classified in Category 3 of ISO 13849-1. Not all dangerous failures can be detected with the EDM output.

6-5 Example of use

This section describes the connection method that the power removal function operates when the door (guard) is opened using a safety module.

Operation in normal state

- When the door (guard) is opened

- When the door (guard) is closed
 \downarrow
The safety output 1 and the safety output 2 of the safety module are turned ON because the feedback input (the EDM output of the driver) is ON.

The HWTO1 input and the HWTO2 input of the driver are turned ON , and the power removal function is released.

How to detect a failure

If a failure that the HWTO1 input or the HWTO2 input is not turned OFF occurs, the EDM output is not turned ON. A failure can be detected because the safety module is not reset even if the door (guard) is closed and the motor cannot be started.

6-6 Verification testing of power removal function

- Be sure to perform the verification testing of the power removal function when starting up or maintaining the equipment, or when replacing the driver.
- According to use conditions of the safety related parts of a control system, perform a verification testing of the power removal function at least once three months.
- Keep the verification result on record.

Description of verification testing

1. Turn on the control power supply and main power supply of the driver while both the HWTO1 and HWTO2 inputs are an ON state.
Check that the motor can be excited from the EtherCAT master and the EDM output is in an OFF state.
2. Turn both the HWTO1 input and the HWTO2 input OFF.

Check that the motor puts into a non-excitation state and the EDM output is turned ON.
6-7 Related functions

Note The related functions are not safety-related parts of a control system.

- ETO-CLR input

If the ETO-CLR input is turned ON after both the HWTO1 and HWTO2 inputs are turned ON to release the power removal function, the motor puts into a state possible to excite.

Related object

Index	Name	Description	Initial value
4199 C	ETO reset action (ETO-CLR)	Sets the judgment level of the signal when the motor is put into a state possible to excite by the ETO-CLR input. [Setting range] 1: Activate at ON edge 2: Activate at ON level	1

- HWTOIN-MON output

If the HWTO1 input or the HWTO2 input is turned OFF, the HWTOIN-MON output is turned ON.

- ETO-MON output

If the HWTO1 input or the HWTO2 input is turned OFF when the "HWTO mode selection (4190h)" is set to " 0 : Alarm is not present," the ETO-MON output is turned ON. If the motor is put into a state possible to excite by the ETO-CLR input after both the HWTO1 and HWTO2 inputs are turned ON, the ETO-MON output is turned OFF.

Related object

Index	Name	Description	Initial value
4190h	HWTO mode selection	Generates an alarm when the HWTO1 input or the HWTO2 input is turned OFF. [Setting range] 0: Alarm is not present $1:$ Alarm is present	0

- EDM-MON output

If both the HWTO1 and HWTO2 inputs are turned OFF, the EDM-MON output is turned ON.
Note Be sure to use the EDM output of CN1 to detect the failure of the power removal function.

- Alarm of HWTO input detection

If the "HWTO mode selection (4190h)" is set to "1: Alarm is present," an alarm will be generated when either the HWTO1 input or the HWTO2 input is turned OFF. (HWTO input detection, alarm code 68h)
At this time, the PWR/ALM LED blinks once in red repeatedly.
When the "HWTO mode selection (4190h)" is set to "1: Alarm is present," the motor will put into a state possible to excite if the ALM-RST input is turned from OFF to ON after the power removal function is released. (It is enabled at the ON edge.)

Related object

Index	Name	Description	Initial value
4190h	HWTO mode selection	Generates an alarm when the HWTO1 input or the HWTO2 input is turned OFF. [Setting range] 0: Alarm is not present $1:$ Alarm is present	0

- Alarm of HWTO input circuit error

If a time after either the HWTO1 input or the HWTO2 input is turned OFF until the other input is turned OFF exceeds the value set in the "HWTO delay time of checking dual system (4191h)," an alarm will be generated. (HWTO input circuit error, alarm code 53h)
At this time, the PWR/ALM LED blinks twice in red repeatedly.
Related object

Index	Name	Description	Initial value
4191h	HWTO delay time of checking dual system	If a time after either the HWTO1 input or the HWTO2 input is turned OFF until the other input is turned OFF exceeds the value set in this object, an alarm will be generated. [Setting range] 0 to 10 (disable), 11 to 100 ms	0

- ETO reset ineffective period

The motor will not put into a state possible to excite until the time set in the "ETO reset ineffective period (4198h)" is elapsed even if the ETO-CLR input is turned ON.

Related object

Index	Name	Description	Initial value
4198 h	ETO reset ineffective period	Sets a time when the ETO-CLR input is disabled if the motor is put into a state possible to excite by the ETO-CLR input after the HWTO1 input and the HWTO2 input are turned ON. The motor will not put into a state possible to excite until the time set in this object is exceeded even if the ETO-CLR input is turned ON. [Setting range] 0 to 100 ms	0

When the ETO-CLR input is turned ON before the time set in the "ETO reset ineffective period (4198h)" is elapsed (when the motor is put into a state possible to excite at the ON edge of the input)
Motor excitation $\left.\begin{array}{c}\text { Excitation } \\ \text { Non-excitation } \\ \text { DCMD-RDY output, READY output, PLS-RDY output } \begin{array}{l}\text { ON } \\ \text { OFF }\end{array}\end{array} . \begin{array}{l}\end{array}\right]$

When the ETO-CLR input is turned ON after the time set in the "ETO reset ineffective period (4198h)" is elapsed (when the motor is put into a state possible to excite at the ON edge of the input)

* It is the movement when the excitation command is input from the EhterCAT master at the time the ETO-CLR input is turned ON.
- Signal judgment level of ETO-CLR input

If the "ETO reset action (ETO-CLR) (4199h)" is set to "2: Activate at ON level," the motor will put into a state possible to excite at the ON level of the ETO-CLR input instead of the ON edge. (Initial value: Activate at ON edge)

Related object

Index	Name	Description	Initial value
4199 h	ETO reset action (ETO-CLR)	Sets the judgment level of the signal when the motor is put into a state possible to excite by the ETO-CLR input. [Setting range] 1: Activate at ON edge 2: Activate at ON level	1

- Motor excitation by input signals other than ETO-CLR input

Changing the parameter can add a function to put the motor into a state possible to excite by the ALM-RST input and the STOP input. In the initial value, this function is set to the STOP input only.

Related objects

Index	Name	Description	Initial value
419Ah	ETO reset action (ALM-RST)	The motor is put into a state possible to excite by the ALM-RST input after the HWTO1 input and the HWTO2 input are turned ON. [Setting range] 0: Disable 1: Activate at ON edge	0
419 Ch	ETO reset action (STOP)	The motor is put into a state possible to excite by the STOP input after the HWTO1 input and the HWTO2 input are turned ON. [Setting range] 0: Disable 1: Activate at ON edge	1

7 Inspection and maintenance

7-1 Inspection

It is recommended that periodic inspections are conducted for the items listed below after each operation of the motor. If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

■ Inspection item

- Check if the openings in the driver are clogged.
- Check if any of the screws having installed the driver or connection parts of the driver is loose.
- Check if dust is deposited on the driver.
- Check if the driver has unusual smells or appearance defects.

Note The driver uses semiconductor components. Static electricity may damage the semiconductor components of the driver, so be extremely careful when handling the driver.

7-2 Warranty

Check on the Oriental Motor Website or General Catalog for the product warranty.
7-3 Disposal
Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.

8 Cables

8-1 Connection cable

Connection cable set/Flexible connection cable set

These cables are used when connecting a motor and a driver. It is a set of two cables for the motor and the encoder. For the cable set of electromagnetic brake motors, a set of three cables for the motor, the encoder, and the electromagnetic brake is provided.

*1 Only when the motor is the electromagnetic brake type.
*2 Use the cable for encoder when the length of the encoder cable of motor is not enough.
memo When installing the motor on a moving part, use a flexible cable offering excellent flexibility.

- Connection cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC005VZF	$0.5(1.6)$
CC010VZF	$1(3.3)$
CC015VZF	$1.5(4.9)$
CC020VZF	$2(6.6)$
CC025VZF	$2.5(8.2)$
CC030VZF	$3(9.8)$
CC040VZF	$4(13.1)$
CC050VZF	$5(16.4)$
CC070VZF	$7(23.0)$
$\mathbf{C C 1 0 0 V Z F}$	$10(32.8)$
$\mathbf{C C 1 5 0 V Z F}$	$15(49.2)$
$\mathbf{C C 2 0 0 V Z F}$	$20(65.6)$

For motor/encoder/electromagnetic brake

Model	Length [m (ft.)]
CC005VZFB	$0.5(1.6)$
CC010VZFB	$1(3.3)$
CC015VZFB	$1.5(4.9)$
CC020VZFB	$2(6.6)$
CC025VZFB	$2.5(8.2)$
CC030VZFB	$3(9.8)$
CC040VZFB	$4(13.1)$
CC050VZFB	$5(16.4)$
CC070VZFB	$7(23.0)$
CC100VZFB	$10(32.8)$
CC150VZFB	$15(49.2)$
CC200VZFB	$20(65.6)$

- Flexible connection cable set

For motor/encoder

Model	Length [m (ft.)]
CC005VZR	$0.5(1.6)$
CC010VZR	$1(3.3)$
CC015VZR	$1.5(4.9)$
CC020VZR	$2(6.6)$
CC025VZR	$2.5(8.2)$
CC030VZR	$3(9.8)$
CC040VZR	$4(13.1)$
CC050VZR	$5(16.4)$
CC070VZR	$7(23.0)$
$\mathbf{C C 1 0 0 V Z R}$	$10(32.8)$
$\mathbf{C C 1 5 0 V Z R}$	$15(49.2)$
$\mathbf{C C 2 0 0 V Z R}$	$20(65.6)$

For motor/encoder/electromagnetic brake

Model	Length [m (ft.)]
CC005VZRB	$0.5(1.6)$
CC010VZRB	$1(3.3)$
CC015VZRB	$1.5(4.9)$
CC020VZRB	$2(6.6)$
CC025VZRB	$2.5(8.2)$
CC030VZRB	$3(9.8)$
CC040VZRB	$4(13.1)$
CC050VZRB	$5(16.4)$
CC070VZRB	$7(23.0)$
CC100VZRB	$10(32.8)$
$\mathbf{C C 1 5 0 V Z R B}$	$15(49.2)$
$\mathbf{C C 2 0 0 V Z R B}$	$20(65.6)$

- Extension cable set/Flexible extension cable set

These cables are used when extending the connection cable.
Use if the length of the connection cable used is not enough when extending the distance between a motor and a driver.
It is a set of two cables for the motor and the encoder. For the cable set of electromagnetic brake motors, a set of three cables for the motor, the encoder, and the electromagnetic brake is provided.

*1 Use the connection cable used.
*2 Only when the motor is of electromagnetic brake type.
memo - When installing the motor on a moving part, use a flexible cable offering excellent flexibility.

- When extending the wiring length by connecting an extension cable to the connection cable, keep the total cable length to 20 m (65.6 ft .) or less.
- Extension cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZFT	$1(3.3)$
CC020VZFT	$2(6.6)$
CC030VZFT	$3(9.8)$
CC050VZFT	$5(16.4)$
CC070VZFT	$7(23.0)$
CC100VZFT	$10(32.8)$
CC150VZFT	$15(49.2)$

- Flexible extension cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZRT	$1(3.3)$
CC020VZRT	$2(6.6)$
CC030VZRT	$3(9.8)$
CC050VZRT	$5(16.4)$
CC070VZRT	$7(23.0)$
CC100VZRT	$10(32.8)$
CC150VZRT	$15(49.2)$

For motor/encoder/electromagnetic brake

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZFBT	$1(3.3)$
CC020VZFBT	$2(6.6)$
CC030VZFBT	$3(9.8)$
CC050VZFBT	$5(16.4)$
CC070VZFBT	$7(23.0)$
CC100VZFBT	$10(32.8)$
CC150VZFBT	$15(49.2)$

For motor/encoder/electromagnetic brake

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZRBT	$1(3.3)$
CC020VZRBT	$2(6.6)$
CC030VZRBT	$3(9.8)$
CC050VZRBT	$5(16.4)$
CC070VZRBT	$7(23.0)$
CC100VZRBT	$10(32.8)$
CC150VZRBT	$15(49.2)$

8-2 I/O signal cable

This is a shielded cable for good noise immunity to connect the I/O signals of the EtherCAT master to the driver. The ground wire useful to grounding is extracted from both ends of the cable. A connector is assembled at the driver side.

Model	Cable length $[\mathrm{m}(\mathrm{ft})]$.	Number of lead wire cores
CC24D005C-1	$0.5(1.6)$	24 pcs.
CC24D010C-1	$1(3.3)$	
CC24D020C-1	$2(6.6)$	

9 Accessories

9－1 Pulse signal converter for noise immunity

This product converts a pulse signal，which is output from the open collector output，to a pulse signal for good noise immunity by outputting the pulse signal again from the differential output．
Model：VCSO6

9－2 Relay contact protection parts／circuits

－CR circuit for surge suppression
This product is effective to suppress the surge which occurs in a relay contact part．Use it to protect the contacts of the relay or switch．

Model：EPCR1201－2
－CR circuit module
This product is effective to suppress the surge which occurs in a relay contact part．Use it to protect the contacts of the relay or switch．
Four pieces of CR circuit for surge suppression are mounted on the compact circuit，and this product can be installed to the DIN rail．This product can make the wiring easily and securely since it also supports terminal block connection．

Model：VCSO2

9－3 Regeneration resistor

If vertical drive（gravitational operation）such as elevator applications is performed or if sudden start－stop operation of a large inertial load is repeated frequently，connect the regeneration resistor． Be sure to connect if an alarm or warning of＂Overvoltage＂was generated．

Model：RGB100

3 DC power input type

This part explains contents specific to the DC power input type driver.

Table of contents

1 System configuration 54
2 Preparation 55
2-1 Checking the product 55
2-2 How to identify the product model 55
2-3 Products possible to combine 55
2-4 Information about nameplate 56
2-5 Names and functions of parts 56
2-6 Indication of LEDs 58
3 Installation 59
3-1 Installation location 59
3-2 Installation method 59
4 Connection 61
4-1 Connection example 61
4-2 Connecting the control power supply. 62
4-3 Connecting the main power supply and grounding 63
4-4 Connecting the EtherCAT communication cable 64
4-5 Connecting the USB cable 65
4-6 Connecting the I/O signals 65
4-7 Noise elimination measures 69
4-8 Conformity to the EMC Directive 71

1 System configuration

2 Preparation

This chapter explains the items you should check, as well as names and functions of each part.

2-1 Checking the product

Verify that the items listed below are included. Report any missing or damaged items to the Oriental Motor sales office from which you purchased the product.

- Driver \qquad 1 unit
- CN1 connector (10 pins) \qquad 1 pc.
- CN4 connector (6 pins) 1 pc.
- CN7 connector (24 pins) 1 pc .
- Instructions and Precautions for Safe Use. 1 copy

Included connector model

Type	Part number	Manufacturer
CN1 connector	DFMC0,5/5-ST-2,54	PHOENIX CONTACT GmbH \& Co. KG
CN4 connector	DFMC1,5/3-ST-3,5-LR	PHOENIX CONTACT GmbH \& Co. KG
CN7 connector	DFMC0,5/12-ST-2,54	PHOENIX CONTACT GmbH \& Co. KG

Check the model name of the driver against the number shown on the nameplate. Refer to p .56 for how to identify the nameplate.

1	Series	AZD: AZ Series driver
2	Power supply input	K: 24/48 VDC
3	Network type	ED: EtherCAT Drive Profile Compatible

2-3 Products possible to combine

Products with which the driver can be combined are listed below. Check the model name of the product with the nameplate.

Power supply type	Product type	Applicable series	Model name representing series name *1	Example of model name
DC input	Stepping motor	AZ Series	AZM	AZM46AK AZM66AK-TS10
	Motorized actuator	EAS Series *2	EASM	EASM4NXD005AZAK
		EAC Series *2	EACM	EACM2E05AZAK
		EZS Series *2	EZSM	EZSM6D005AZAK
		DR Series	DR	DR28G2.5B03-AZAKU DR28T1B03-AZAKD-F
		DRS2 Series	DRSM	DRSM60-05A4AZAK
		DGII Series	$\begin{aligned} & \text { DGM } \\ & \text { DGB } \end{aligned}$	$\begin{aligned} & \text { DGM85R-AZAK } \\ & \text { DGB85R12-AZAKR } \end{aligned}$
		EH Series	EH	EH4-AZAKH
		L Series	LM	LM4F150AZAK-1

*1 The driver described in this manual can be combined with products that begin with these model names.
*2 For these motorized actuators, the equipped motors have been evaluated to affix the CE Marking. Check the model name of the equipped motor with the nameplate.

2-4 Information about nameplate

The figure shows an example.

memo The position describing the information may vary depending on the product.

2-5 Names and functions of parts

Type	Name	Sign	Description
LED	PWR/ALM LED (Green/Red)	PWR/ALM	- This LED is lit in green while the control power supply is turned on. - If an alarm (protective function) is generated, the LED will blink in red. - If the power removal function (p.73) is triggered, the LED will blink in green. - If information is generated, the LED will simultaneously blink in green and red twice. (Green and red colors may overlap and it may be visible to orange.)
	MAIN POWER LED (Green)	MAIN POWER	This LED is lit in green while the main power supply is turned on.
	RUN LED (Green)	RUN	This LED indicates the status of EtherCAT communication.
	ERR LED (Red)	ERR	This LED blinks when an error occurred via EtherCAT communication.
	L/A LEDs (Green)	L/A	These LEDs indicate the LINK/ACT status of EtherCAT communication.
Switch	Node address setting switches	$\begin{aligned} & \text { ECAT ID } \times 10 \\ & \text { ECAT ID } \times 1 \end{aligned}$	Used to set the node address. Factory setting: $00(\times 10: 0, \times 1: 0)$
	HOME PRESET switch	HOME PRESET	Used to set the starting position (home) when positioning operation is performed.
Connector	Encoder connector (CN2)	ENCODER	Connects the encoder.
	Motor connector (CN3)	MOTOR	Connects the motor.
	USB communication connector	$\bullet \square$	Connects a PC in which the MEXEO2 has been installed. (USB2.0 mini-B port)
	EtherCAT communication connector (CN5)	ECAT IN	Connects with the upper EtherCAT communication compatible product.
	EtherCATcommunication connector (CN6)	ECAT OUT	Connects with the EtherCAT communication compatible product of the following node address.
	I/O signal connector (CN7)	I/O	Connects when using direct I/O or sensors.
Terminal	Control power supply input terminals (CN1)	+24V, 0V	Connects the control power supply.
	Power removal signal input terminals (CN1)	HWTO1+, HWTO1- HWTO2+, HWTO2-	Connects the external device.
	Power removal monitor output terminals (CN1)	EDM+, EDM-	
	Main power supply input terminals (CN4)	+, -	Connects the main power supply.
	Electromagnetic brake terminals (CN4)	MB1, MB2	Connects the lead wires from the electromagnetic brake.
	Protective Earth Terminal (CN4)	$\stackrel{(1)}{\square}$	Ground using a grounding wire of AWG18 to 16 (0.75 to $1.25 \mathrm{~mm}^{2}$).
Other	DIN lever	-	This is used to install the driver to a DIN rail.

2-6 Indication of LEDs

LED indication related to driver status

PWR/ALM LED status		Description	
Green	Red		
Unlit	Unlit	The control power supply is not turned on.	
Lit	Unlit	The control power supply is turned on.	
Blinking	Un alarm is being generated. Details about the generated alarm can be checked by counting the number of times the LED blinks. The LED is lit in green when the alarm is reset.		
Unlit	The power removal function has been activated. After the power removal function is released, the LED is lit in green when the ETO-CLR input is turned ON.		
Blinking twice at the same time *	- Information is being generated. The LED is lit in green when the information is cleared. • Remote operation is being executed with the MEXEO2. The LED is lit in green when remote operation is complete.		
Blinking at the same time *	The interlock was released by holding down the HOME PRESET switch. The LED is lit in green when the time set in the "Extended input (EXT-IN) interlock releasing time (4972h)" is elapsed.		
Lit at the same time *	The input signal assigned to the HOME PRESET switch is being executed. The LED is lit in green when it is complete.		
Repeating "Green \rightarrow Red \rightarrow Simultaneously lit \rightarrow Unlit"	This is the driver simulation mode.		

* Green and red colors may overlap and it may be visible to orange.

LED indication related to EtherCAT communication status

LED indicator	LED status	Description
RUN (Green)	Unlit	Initialization state
	Blinking *	Pre-Operational state
	Single flash *	Safe-Operational state
	Lit	Operational state (normal condition)
ERR (Red)	Unlit	No communication error
	Blinking *	Communication setting error
	Single flash *	Communication data error
	Double flash *	Communication watchdog timeout
L/A (Green)	Unlit	No link
	Lit	Link establishment
	Flickering *	Operation in progress after link establishment

* The timing to blink the LED is as follows. (unit: ms)

3 Installation

This chapter explains the installation location and installation method of the driver.

3-1 Installation location

The driver is designed and manufactured to be incorporated in equipment. Install it in a well-ventilated location that provides easy access for inspection. The location must also satisfy the following conditions:

- Inside an enclosure that is installed indoors (provide vent holes)
- Operating ambient temperature: 0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
- Operating ambient humidity: 85% or less (non-condensing)
- Area free of explosive atmosphere or toxic gas (such as sulfuric gas) or liquid
- Area not exposed to direct sun
- Area free of excessive amount of dust, iron particles or the like
- Area not subject to splashing water (rain, water droplets), oil (oil droplets), or other liquids
- Area free of excessive salt
- Area not subject to continuous vibrations or excessive shocks
- Area free of excessive electromagnetic noise (from welders, power machinery, etc.)
- Area free of radioactive materials, magnetic fields or vacuum
- Up to $1,000 \mathrm{~m}(3,300 \mathrm{ft}$.) above sea level

3-2 Installation method

Mount the driver to a 35 mm (1.38 in .) width DIN rail.
When installing two or more drivers in parallel, it is possible to install them closely in the horizontal direction. Provide a minimum clearance of 50 mm (1.97 in.) in the vertical direction.
When installing three or more drivers closely, the heat generation of the inside drivers become high. Install the less frequently used drivers toward the inside. Also, use the drivers in conditions that an ambient temperature is 0 to $+40^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ and the stop current is 50% or less.

Unit: mm (in.)

Note

- Install the driver inside an enclosure whose pollution degree is 2 or better environment, or whose degree of protection is IP54 minimum.
- Do not install any equipment that generates a large amount of heat or noise near the driver.
- Do not install the driver underneath the EtherCAT master or other equipment vulnerable to heat.
- If the ambient temperature of the driver exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, reconsider the ventilation condition such as providing forced cooling by using fans or creating spaces between the drivers.

Mounting to DIN rail

1. Pull down the DIN lever of the driver and lock it. Hang the hook at the rear to the DIN rail.
2. Hold the driver to the DIN rail, and push up the DIN lever to secure.
3. Secure both sides using end plates.

Removing from DIN rail

Pull the DIN lever down until it locks using a slotted screwdriver, and lift the bottom of the driver to remove it from the rail. Use force of about 10 to 20 N (2.2 to 4.5 lb .) to pull the DIN lever to lock it. Excessive force may damage the DIN lever.

Dimensions

- Unit: mm (in.)
- Mass: $0.18 \mathrm{~kg}(0.4 \mathrm{lb}$.

4 Connection

This chapter explains a connection example of a driver and a motor, connection methods of power supplies, the grounding method, and others.
The installation and wiring methods in compliance with the EMC Directive as well as protection against noise are also explained.

For protection against electric shock, do not turn on the power supply until the wiring is completed.

4-1 Connection example

The figure shows models for the electromagnetic brake type.

- Connect the connectors securely. Insecure connections may cause malfunction or damage to the motor or the driver.
- The lead wires of the "cable for electromagnetic brake" have polarities, so connect them in the correct polarities. If the lead wires are connected with their polarities reversed, the electromagnetic brake will not operate properly.
- Do not wire the power supply cable of the driver in the same cable duct with other power lines or motor cable. Doing so may cause malfunction due to noise.
- Keep 20 m (65.6 ft .) or less for the wiring distance between the motor and the driver. To extend more than $20 \mathrm{~m}(65.6 \mathrm{ft}$.) may result in the driver heat generation or increase of the electrical noise emitted from the product.
memo - Before connecting or disconnecting a connector, turn off the main power supply and the control power supply, and check the PWR/ALM LED and the MAIN POWER LED have been turned off.
- When pulling off the motor cable, do so while pressing the latches on the connector with fingers.
- When installing the motor on a moving part, use a flexible cable offering excellent flexibility. Refer to $p .81$ for the model name.
- Electrical wire size

Connector	Terminal symbol	Recommended wire size
CN1	+24 V, OV, HWTO1+, HWTO1-, HWTO2+, HWTO2-, EDM,+ EDM-	Stranded wire or solid wire AWG26 to $20\left(0.14\right.$ to $\left.0.5 \mathrm{~mm}^{2}\right)$
	,,+- MB1, MB2	Stranded wire or solid wire AWG24 to $16\left(0.2\right.$ to $\left.1.25 \mathrm{~mm}^{2}\right)$
	$\left(\frac{1}{\theta}\right)$	Stranded wire or solid wire AWG18 to $16\left(0.75\right.$ to $\left.1.25 \mathrm{~mm}^{2}\right)$
CN7	-	Stranded wire or solid wire AWG26 to $20\left(0.14\right.$ to $\left.0.5 \mathrm{~mm}^{2}\right)$

4-2 Connecting the control power supply

- Wiring method of CN1 connector
- Applicable lead wire: AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation: 7 mm (0.28 in .)

1. Strip the insulation of the lead wire.
2. Insert the lead wire while pushing the button of the orange color with a slotted screwdriver.
3. After having inserted, release the button to secure the lead wire.

Power supply current capacity

Input power supply voltage	Power supply current capacity	
	Without electromagnetic brake	With electromagnetic brake
$24 \mathrm{VDC} \pm 5 \%^{*} 1$	0.15 A	$0.4 \mathrm{~A} * 2$

*1 When an electromagnetic brake motor is used, if the wiring distance between the motor and the driver is extended to 20 m (65.6 ft .) using our cable, the input voltage is $24 \mathrm{VDC} \pm 4 \%$.
*2 The AZM46 type is 0.23 A.

Pin assignment

There are two terminals for 0 V : One for control power supply and the other is for internal connection. Check each position in the figure and the table shown.

Sign	Description
$+24 \mathrm{~V}, 0 \mathrm{~V} * 1$	Connects the control power supply.
HWTO1+, HWTO1- HWTO2+, HWTO2-	Connects the external device. When using the power removal function, remove the jumper wires and connect the external device. If the power removal function is not used, connect jumper wires between the terminals to short-circuit as shown in the figure.
EDM + , EDM-	Connects the external device. If the power removal function is not used, do not connect anything.
$+\mathrm{V}, 0 \mathrm{O} * 2$	These are for internal connection. Do not connect anything. If the power removal function is not used, connect a jumper wire between the terminals to short-circuit as shown in the figure.

4-3 Connecting the main power supply and grounding

The CN4 connector has the power supply terminal and the Protective Earth Terminal. The applicable wire size varies between lead wires for a power supply and the Protective Earth. Be sure to use proper lead wires.

Wiring method of CN4 connector

- Applicable lead wire For power supply: AWG24 to 16 (0.2 to $1.25 \mathrm{~mm}^{2}$)

For grounding: AWG18 to 16 (0.75 to $1.25 \mathrm{~mm}^{2}$)

- Stripping length of wire insulation: 10 mm (0.39 in .)

1. Strip the insulation of the lead wire.
2. Insert the lead wire while pushing the button of the orange color with a slotted screwdriver.
3. After having inserted, release the button to secure the lead wire.

Power supply current capacity

The current capacity of the power supply varies depending on the product combined.
Check the current capacity in reference to the equipped motor model when using the EAC Series, EAS Series, or EZS Series.

Series	Model	Input power supply voltage	Power supply current capacity
AZ Series EAC Series EAS Series EZS Series	AZM14	$24 \mathrm{VDC} \pm 5$ \%	0.4 A or more
	AZM15		0.5 A or more
	AZM24		1.6 A or more
	AZM26		1.5 A or more
	AZM46	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	1.5 A or more
	AZM48		2.1 A or more
	AZM66		3.3 A or more
	AZM69		3.1 A or more
DGII Series	DGM60	$24 \mathrm{VDC} \pm 5$ \%	1.6 A or more
	DGB85 DGM85	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	1.5 A or more
	$\begin{aligned} & \text { DGB1 } 30 \\ & \text { DGM1 } 30 \end{aligned}$		3.3 A or more
DR Series	DR20	$24 \mathrm{VDC} \pm 5$ \%	0.4 A or more
	DR28		1.3 A or more
DRS2 Series	DRSM42	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	1.5 A or more
	DRSM60		2.2 A or more
EH Series	EH4	$24 \mathrm{VDC} \pm 5$ \%	1.6 A or more
L Series	LM2 LM4	$\begin{aligned} & 24 \mathrm{VDC} \pm 5 \% \\ & 48 \mathrm{VDC} \pm 5 \% \end{aligned}$	3.3 A or more

- Pin assignment

Sign	Description
+	Main power supply input $(24$ VDC/48 VDC)
-	Main power supply GND
\perp	Protective Earth
MB1	Electromagnetic brake - (black)
MB2	Electromagnetic brake+ (white)
NC	Not connected

■ Grounding the driver

Be sure to ground the driver.
Do not share the grounding wire with a welder or any other power equipment.
Note that the applicable wire size varies between lead wires for a power supply and the Protective Earth.

4-4 Connecting the EtherCAT communication cable

Connect the EtherCAT master and the CN5 connector (ECAT IN) on the driver using the EtherCAT communication cable.
Be sure to connect from the CN6 connector (ECAT OUT) to the CN5 connector (ECAT IN) when linking drivers.

Pin assignment

Signal name	Description
TXP	Transmitted data+
TXN	Transmitted data-
RXP	Received data+
N.C.	-
N.C.	-
RXN	Received data-
N.C.	-
N.C.	-

4-5 Connecting the USB cable

Using a USB cable of the following specification, connect a PC in which the MEXE02 has been installed to the USB communication connector.

Specification	USB2.0 (full speed)
Cable	Length: $3 \mathrm{~m}(9.8 \mathrm{ft}$.$) or less$ Shape: A to mini B

memo - Connect the driver and PC directly using the USB cable.

- In large electrically noisy environments, use the USB cable with a ferrite core or install a ferrite core to the USB cable.

4-6 Connecting the I/O signals

Connect when using direct I/O or sensors.

Wiring method of CN7 connector

- Applicable lead wire: AWG26 to 20 (0.14 to $0.5 \mathrm{~mm}^{2}$)
- Stripping length of wire insulation: 7 mm (0.28 in .)

1. Strip the insulation of the lead wire.
2. Insert the lead wire while pushing the button of the orange color with a slotted screwdriver.
3. After having inserted, release the button to secure the lead wire.

memo Be certain the I/O signal cable is as short as possible. The maximum input frequency will decrease as the cable length increases.

Pin assignment

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal name *	Description *		$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal name *	Description *
1	$\begin{gathered} \mathrm{CW}+ \\ {[\mathrm{PLS}+]} \end{gathered}$	CW pulse input+ [Pulse input+]		13	$\begin{aligned} & \text { CW- } \\ & {[P L S-]} \end{aligned}$	CW pulse input[Pulse input-]
2	$\begin{aligned} & \text { CCW+ } \\ & {[\text { DIR+] }} \end{aligned}$	CCW pulse input+ [Rotation direction switching input+]		14	$\begin{aligned} & \text { CCW- } \\ & \text { [DIR-] } \end{aligned}$	CCW pulse input[Rotation direction switching input-]
3	INO	Control input 0 (HOMES)		15	IN1	Control input 1 (FREE)
4	IN2	Control input 2 (ETO-CLR)		16	IN3	Control input 3 (EXT1)
5	$\begin{gathered} \text { IN-COM } \\ 0-3 \end{gathered}$	INO to IN3 inputs common		17	$\begin{gathered} \text { IN-COM } \\ 4-5 \end{gathered}$	IN4, IN5 inputs common
6	IN4	Control input 4 (FW-LS)		18	IN5	Control input 5 (RV-LS)
7	OUTO	Control output 0 (HOME-END)		19	OUT1	Control output 1 (ETO-MON)
8	OUT2	Control output 2 (PLS-RDY)		20	OUT3	Control output 3 (CRNT)
9	OUT4	Control output 4 (MOVE)		21	OUT5	Control output 5 (ALM-B)
10	OUT-COM	Output common		22	GND	GND
11	ASG+	Phase A pulse output+		23	ASG-	Phase A pulse output-
12	BSG+	Phase B pulse output+		24	BSG-	Phase B pulse output-

[^4]
- Connection example with a current sink output circuit

- When the pulse input circuit of the driver is of line driver type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.

[^5]memo - Use input signals at 24 VDC .

- Use output signals at 12 to $24 \mathrm{VDC}, 10 \mathrm{~mA}$ or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 V maximum.
- When the pulse input circuit of the driver is of open collector type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.
memo Use the CW [PLS] input and CCW [DIR] input at 5 to 24 VDC . When using signals at 24 VDC , connect an external resistor R 1 ($1.2 \mathrm{k} \Omega$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more). When using signals at 5 VDC , apply the voltage directly.

When the voltage of pulse input signals is 5 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

When the voltage of pulse input signals is 24 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

- Connection example with a current source output circuit

- When the pulse input circuit of the driver is of line driver type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.

[^6]memo - Use input signals at 24 VDC .

- Use output signals at 12 to $24 \mathrm{VDC}, 10 \mathrm{~mA}$ or less. If the current exceeds 10 mA , connect an external resistor RO so that the current becomes 10 mA or less.
- The saturated voltage of the output signal is 3 V maximum.
- When the pulse input circuit of the driver is of open collector type

The pin No.1, No.2, No.13, and No. 14 are only available to the pulse input. Other functions cannot be assigned.
memo Use the CW [PLS] input and CCW [DIR] input at 5 to 24 VDC . When using signals at 24 VDC , connect an external resistor R 1 ($1.2 \mathrm{k} \Omega$ to $2.2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$ or more). When using signals at 5 VDC , apply the voltage directly.

When the voltage of pulse input signals is 5 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

When the voltage of pulse input signals is 24 VDC

* Values in brackets [] are signals when the 1-pulse input mode is set.

4-7 Noise elimination measures

There are two types of electrical noises: One is a noise to invade into the driver from the outside and cause the driver malfunction, and the other is a noise to emit from the driver and cause peripheral equipment malfunction. For the noise that is invaded from the outside, take measures to prevent the driver malfunction. It is needed to take adequate measures because signal lines are very likely to be affected by the noise.
For the noise that is emitted from the driver, take measures to suppress it.

■ Measures against electrical noise

There are the following three methods mainly to take measures against the electrical noise.

- Noise suppression
- When relays or electromagnetic switches are used, use noise filters or CR circuits to suppress surge generated by them.
- Use our connection cable when extending the wiring distance between the motor and the driver. Refer to p. 81 for the model name. This is effective in suppressing the electrical noise emitted from the motor.
- Cover the driver by a metal plate such as aluminum. This is effective in shielding the electrical noise emitted from the driver.

- Prevention of noise propagation

- Connect a noise filter on the AC input side of the DC power supply.
- Place the power lines, such as the motor and the power supply cables, keeping a distance of 200 mm (7.87 in .) or more from the signal lines, and also do not bundle them or wire them in parallel. If a power cable and a signal cable have to cross, cross them at a right angle.
- Use shielded twisted pair cables for power lines and signal lines.
- Keep cables as short as possible without coiling and bundling extra lengths.
- Grounding multiple points will increase effect to block electrical noise because impedance on the grounding points is decreased. However, ground them so that a potential difference does not occur among the grounding points. I/O signal cable that includes a ground wire are provided in our product line. Refer to p. 85 for the model name.
- To ground a shielded cable, use a metal cable clamp that can maintain Shielded cable contact with the entire circumference of the shielded cable, and ground as near the product as possible.
- Suppression of effect by noise propagation
- Loop the noise propagated cable around a ferrite core. Doing so will prevent the propagated noise invades into the driver or emits from the driver. The frequency band in which an effect by the ferrite core can be seen is generally 1 MHz or more. Check the frequency characteristics of the ferrite core used. When increasing the effect of noise attenuation by the ferrite core, loop the cable a lot.
- Change the transmission method of the pulse signal to the line driver type in order to prevent noise effects. If the pulse signal of the EtherCAT master is of the open collector type, use our pulse signal converter for noise immunity. Refer to $p .86$ for the model name.

- Noise suppression product

- Noise filter
- Connect a noise filter (or equivalent) in the table on the $A C$ input side of the $D C$ power supply. When a power supply transformer is used, be sure to connect a noise filter on the AC input side of the power supply transformer. Doing so will prevent the propagated noise through the power line. Install the noise filter as close to the input terminals of DC power supply as possible.

Manufacturer	Part number
SOSHIN ELECTRIC CO., LTD.	HF2010A-UPF
Schaffner EMC	FN2070-10-06

- Use the AWG18 ($0.75 \mathrm{~mm}^{2}$) or thicker wire for the input and output cables of the noise filter, and secure firmly using a cable clamp or others so that the cable does not come off the enclosure.
- Place the input cable as far apart as possible from the output cable, and do not wire the cables in parallel. If the input and output cables are placed at a close distance or if they are wired in parallel, the noise in the enclosure affects the power cable through stray capacitance, and the noise suppressing effect will reduce.
- Connect the ground terminal of the noise filter to the grounding point, using as thick and short a wire as possible.
- When connecting a noise filter inside an enclosure, wire the input cable of the noise filter as short as possible. Wiring in long distance may reduce the noise suppressing effect.

- Our noise suppression products

Check the model names on p. 85 and p. 86 .

- I/O signal cable

This is a shielded cable for good noise immunity to connect the driver and the EtherCAT master. The ground wire useful to grounding is extracted from both ends of the cable. The EMC testing is conducted using our I/O signal cable.

- Pulse signal converter for noise immunity

This product converts a pulse signal, which is output from the open collector output, to a pulse signal for good noise immunity by outputting the pulse signal again from the differential output.

- Surge suppressor

This product is effective to suppress the surge which occurs in a relay contact part. Connect it when using a relay or electromagnetic switch. CR circuit for surge suppression and CR circuit module are provided.

4-8 Conformity to the EMC Directive

Effective measures must be taken against the EMI that the motor and the driver may give to adjacent control-system equipment, as well as the EMS of the motor and the driver itself, in order to prevent a serious functional impediment in the machinery. The use of the following installation and wiring methods will enable the motor and the driver to be compliant with the EMC Directive. Refer to p. 229 for the applicable standards.
Oriental Motor conducts EMC testing on its motors and drivers in accordance with "Example of installation and wiring."
The user is responsible for ensuring the machine's compliance with the EMC Directive, based on the installation and wiring explained next.

- Connecting the noise filter

In large electrically noisy environments, connect a noise filter. Refer to "Noise filter" on p. 70 for details.

- Connecting the power supply

Use a DC power supply compliant with the EMC Directive.
Wire and ground the power supply over the shortest possible distance using a shielded cable.
Refer to "Prevention of noise propagation" on p. 70 for how to ground the shielded cable.

- Connecting the motor cable

Use our connection cable when extending the wiring distance between the motor and the driver. Refer to p. 81 for the model name.

- Connecting the signal cable

Refer to "Prevention of noise propagation" on p.70.

- Grounding method
- The cable used to ground the motor, the driver, and the noise filter must be as thick and short as possible so that no potential difference is generated.
- Choose a large, thick and uniformly conductive surface for the grounding point.
- When installing the motor and the driver, ground their Protective Earth Terminals. Refer to the p. 64 for how to ground the driver.
- Example of installation and wiring

The driver uses parts that are sensitive to electrostatic charge. Take measures against static electricity since static electricity may cause the driver to malfunction or suffer damage.

5 Setting of node address

This chapter explains how to set the node address.

5-1 Setting method

Set the node address using two node address setting switches (ECAT ID $\times 10, \times 1$).
The node address setting switches are hexadecimal number. Convert the node address from decimal to hexadecimal to set.
When connecting two or more EtherCAT communication compatible products, do not set duplicate node address.
Factory setting: $0(\times 10: 0, \times 1: 0)$

Setting range	Description
$0(00 \mathrm{~h})$	The setting of the EtherCAT master is enabled.
1 to 255 (1h to FFh)	The setting of the driver is enabled.

Note Be sure to turn off the control power supply of the driver before setting the switches. If the switches are set while the control power supply is in an on-state, the new setting will not be enabled.

6 Power removal function

The power removal function is a function that stops supplying the power to the motor by the hardware.
This function shuts off the drive signal of the inverter circuit that controls the motor current with two input channels (HWTO1 input, HWTO 2 input). This brings a shutoff state of the power supplying to the motor (power removal status). The power removal function is assumed to be used to prevent unexpected starting of the moving parts of equipment when an operator works inside the operating range of the moving parts.

Note - The power removal function of the DC power input type is not a safety function.

- Be sure to check the motor is in a standstill state before executing the power removal function. If the power removal function is executed while the motor is operated, it may cause damage to the motor, driver, or equipment.

6-1 Notes when using the power removal function

- If the power removal function operates, the motor output shaft may rotate due to external forces (such as gravity on a vertical axis). To hold the motor output shaft in position, install an external brake mechanism or equivalent. The brake mechanism of the electromagnetic brake motor is used for the purpose to hold the position. Do not use the brake mechanism of the electromagnetic brake motor for braking the motor rotation. This may result in injury or damage to equipment.
- If the inverter circuit is failed, the motor output shaft may rotate up to 180 degrees in an electrical angle (3.6 degrees in a mechanical angle) even when the power removal function operates. Make sure this movement does not cause hazardous situations. Failure to do so may result in injury or damage to equipment.

6-2 I/O signals

HWTO1 input, HWTO2 input

The HWTO1 input and HWTO2 input are signals to operate the power removal function.

Note

 Provide individual contacts for operating the HWTO1 input and the HWTO2 input.

Specification

- Input voltage: $24 \mathrm{VDC} \pm 10 \%$

EDM output
The EDM output is a signal to monitor a failure in the power removal function.
Note Do not use the EDM output for any other purpose except for monitoring a failure.

Specifications

- Voltage: 30 VDC or less
- Current: 50 mA or less
- Output saturated voltage: 1.1 V max.

6-3 Operation of power removal function

Transition to power removal status

If both the HWTO1 and HWTO2 inputs are turned OFF, the driver transitions to the power removal status, and the power supplying to the motor is shut off by the hardware, causing the motor to put into a non-excitation state.
In the power removal status, the status of the motor and driver will be as follows. [When the "HWTO mode selection
(4190h)" is set to " 0 : Alarm is not present (initial value)"]

- The ETO-MON output is ON.
- The DCMD-RDY output, the READY output, the PLS-RDY output, and the MBC output are OFF.
- The PWR/ALM LED blinks in green.
- When an electromagnetic brake motor is used, the electromagnetic brake is in a state of holding the motor shaft.

Note - Be sure to check the motor is in a standstill state before executing the power removal function. If the power removal function is executed while the motor is operated, it may cause damage to the motor, driver, or equipment.

- It takes 15 ms maximum from when the HWTO1 and HWTO2 inputs are turned OFF until when the driver is in the power removal status.
- To transition to the power removal status, be sure to turn the HWTO1 and HWTO2 inputs OFF for at least 15 ms .
- Timing chart

* When executing the operation by inputting pulses.

Return from power removal status

If both the HWTO1 and the HWTO2 inputs are turned ON, the power removal status is released. At this time, the motor remains in a non-excitation state. To excite the motor, turn the ETO-CLR input ON in a state where the excitation command is input from the EtherCAT master. (initial value: Activate at ON edge). When the ETO-CLR input is turned ON, the status of the motor and driver will be as follows.

- The ETO-MON output is OFF.
- The DCMD-RDY output, the READY output, the PLS-RDY output, and the MBC output are ON.
- The PWR/ALM LED is lit in green.
- When an electromagnetic brake motor is used, the electromagnetic brake is in a state of releasing the motor shaft.

Note - Even if either the HWTO1 input or the HWTO2 input is turned ON, the power removal status cannot be released.

- If the ON-time of the HWTO1 and HWTO2 inputs is less than 15 ms , the power removal status may not be released.
- When the power removal status is released, a shut-off state of supplying the power to the motor by the hardware is also released.

- Timing chart

*1 When executing the operation by inputting pulses.
*2 It is the movement when the excitation command is input from the EtherCAT master while the ETO-CLR input is turned ON.

Detection for failure of the power removal function

Monitoring the input status of the HWTO1 and HWTO2 inputs and the output status of the EDM output relative to the inputs can detect the failure of the power removal function.
When the power removal function is properly operated, the combination of each signal is any of the following. Combinations other than the table indicate the power removal function of the driver is in a failure state.

HWTO1 input	HWTO2 input	EDM output
ON	ON	OFF
OFF	OFF	ON
ON	OFF	OFF
OFF	ON	OFF

If only one of the HWTO1 input and the HWTO2 input is ON or OFF, the external device or wiring has failed. Check the cause and take a measure immediately. At this time, the EDM output is in an OFF state and the motor puts into a non-excitation state.

Note - Do not release the power removal function when the EDM output is in an OFF state.

- If the driver or external device is failed or an error in wirings occurs, check the cause and take a measure immediately.

6-4 Related functions

- ETO-CLR input

If the ETO-CLR input is turned ON after both the HWTO1 and HWTO2 inputs are turned ON to release the power removal function, the motor puts into a state possible to excite.

Related object

Index	Name	Description	Initial value
4199 h	ETO reset action (ETO-CLR)	Sets the judgment level of the signal when the motor is put into a state possible to excite by the ETO-CLR input. [Setting range] 1: Activate at ON edge 2: Activate at ON level	

- HWTOIN-MON output

If the HWTO1 input or the HWTO2 input is turned OFF, the HWTOIN-MON output is turned ON.

- ETO-MON output

If the HWTO1 input or the HWTO2 input is turned OFF when the "HWTO mode selection (4190h)" is set to "0: Alarm is not present," the ETO-MON output is turned ON. If the motor is put into a state possible to excite by the ETO-CLR input after both the HWTO1 and HWTO2 inputs are turned ON, the ETO-MON output is turned OFF.

Related object

Index	Name	Description	Initial value
4190 h	HWTO mode selection	Generates an alarm when the HWTO1 input or the HWTO2 input is turned OFF. [Setting range] 0: Alarm is not present $1:$ Alarm is present	0

- EDM-MON output

If both the HWTO1 and HWTO2 inputs are turned OFF, the EDM-MON output is turned ON.

- Alarm of HWTO input detection

If the "HWTO mode selection (4190h)" is set to "1: Alarm is present," an alarm will be generated when either the HWTO1 input or the HWTO2 input is turned OFF. (HWTO input detection, alarm code 68h)
At this time, the PWR/ALM LED blinks once in red repeatedly.
When the HWTO mode selection (4190h) is set to "1: Alarm is present," the motor will put into a state possible to excite if the ALM-RST input is turned from OFF to ON after the power removal function is released. (It is enabled at the ON edge.)

Related object

Index	Name	Description	Initial value
4190 h	HWTO mode selection	Generates an alarm when the HWTO1 input or the HWTO2 input is turned OFF. [Setting range] 0: Alarm is not present $1:$ Alarm is present	0

- Alarm of HWTO input circuit error

If a time after either the HWTO1 input or the HWTO2 input is turned OFF until the other input is turned OFF exceeds the value set in the "HWTO delay time of checking dual system (4191h)," an alarm will be generated. (HWTO input circuit error, alarm code 53h)
At this time, the PWR/ALM LED blinks twice in red repeatedly.

Related object

Index	Name	Description	Initial value
4191 h	HWTO delay time of checking dual system	If a time after either the HWTO1 input or the HWTO2 input is turned OFF until the other input is turned OFF exceeds the value set in this object, an alarm will be generated. [Setting range] 0 to 10 (disable), 11 to 100 ms	

- ETO reset ineffective period

The motor will not put into a state possible to excite until the time set in the "ETO reset ineffective period (4198h)" is elapsed even if the ETO-CLR input is turned ON.

Related object

Index	Name	Description	Initial value
4198 h	ETO reset ineffective period	Sets a time when the ETO-CLR input is disabled if the motor is put into a state possible to excite by the ETO-CLR input after the HWTO1 input and the HWTO2 input are turned ON. The motor will not put into a state possible to excite until the time set in this object is exceeded even if the ETO-CLR input is turned ON. [Setting range] 0 to 100 ms	0

When the ETO-CLR input is turned ON before the time set in the "ETO reset ineffective period (4198h)" is elapsed (when the motor is put into a state possible to excite at the ON edge of the input)

Motor excitation Excitation
Non-excitation
ON
DCMD-RDY output, READY output, PLS-RDY output
FF

When the ETO-CLR input is turned ON after the time set in the "ETO reset ineffective period (4198h)" is elapsed (when the motor is put into a state possible to excite at the ON edge of the input)

* It is the movement when the excitation command is input from the EhterCAT master at the time the ETO-CLR input is turned ON.
- Signal judgment level of ETO-CLR input

If the "ETO reset action (ETO-CLR) (4199h)" is set to "2: Activate at ON level," the motor will put into a state possible to excite at the ON level of the ETO-CLR input instead of the ON edge. (Initial value: Activate at ON edge)
Related object

Index	Name	Description	Initial value
		Sets the judgment level of the signal when the motor is put into a state possible to excite by the ETO-CLR input. ETO reset action [Setting range] (ETO-CLR)	1: Activate at ON edge 2: Activate at ON level

- Motor excitation by input signals other than ETO-CLR input

Changing the parameter can add a function to put the motor into a state possible to excite by the ALM-RST input and the STOP input. In the initial value, this function is set to the STOP input only.

Related object

Index	Name	Description	Initial value
419Ah	ETO reset action (ALM-RST)	The motor is put into a state possible to excite by the ALM-RST input after the HWTO1 input and the HWTO2 input are turned ON. [Setting range] 0: Disable 1: Activate at ON edge	0
419 Ch	ETO reset action (STOP)	The motor is put into a state possible to excite by the STOP input after the HWTO1 input and the HWTO2 input are turned ON. lSetting range] 0: Disable $1:$ Activate at ON edge	1

7 Inspection and maintenance

7-1 Inspection

It is recommended that periodic inspections are conducted for the items listed below after each operation of the motor. If an abnormal condition is noted, discontinue any use and contact your nearest Oriental Motor sales office.

■ Inspection item

- Check if the openings in the driver are clogged.
- Check if the mounting place of the driver is loose.
- Check if any of the connection parts of the driver is loose.
- Check if dust is deposited on the driver.
- Check if the driver has unusual smells or appearance defects.

Note The driver uses semiconductor components. Static electricity may damage the semiconductor components of the driver, so be extremely careful when handling the driver.

7-2 Warranty

Check on the Oriental Motor Website or General Catalog for the product warranty.

7-3 Disposal

Dispose the product correctly in accordance with laws and regulations, or instructions of local governments.

8 Cables

8-1 Connection cable

Connection cable set/Flexible connection cable set

(For AZM14, AZM15, AZM24, AZM26)
These cables are used when connecting a motor and a driver.

memo When installing the motor on a moving part, use a flexible cable offering excellent flexibility.

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC005VZ2F2	$0.5(1.6)$
CC010VZ2F2	$1(3.3)$
CC015VZ2F2	$1.5(4.9)$
CC020VZ2F2	$2(6.6)$
CC025VZ2F2	$2.5(8.2)$
CC030VZ2F2	$3(9.8)$
CC040VZ2F2	$4(13.1)$
CC050VZ2F2	$5(16.4)$
CC070VZ2F2	$7(23.0)$
CC100VZ2F2	$10(32.8)$
CC150VZ2F2	$15(49.2)$
CC200VZ2F2	$20(65.6)$

- Flexible connection cable set

For motor/encoder

Model	Length [m (ft.)]
CC005VZ2R2	$0.5(1.6)$
CC010VZ2R2	$1(3.3)$
CC015VZ2R2	$1.5(4.9)$
CC020VZ2R2	$2(6.6)$
CC025VZ2R2	$2.5(8.2)$
CC030VZ2R2	$3(9.8)$
CC040VZ2R2	$4(13.1)$
CC050VZ2R2	$5(16.4)$
CC070VZ2R2	$7(23.0)$
CC100VZ2R2	$10(32.8)$
CC150VZ2R2	$15(49.2)$
CC200VZ2R2	$20(65.6)$

Connection cable set/Flexible connection cable set (For AZM46, AZM48, AZM66, AZM69)

These cables are used when connecting a motor and a driver. It is a set of two cables for the motor and the encoder. For the cable set of electromagnetic brake motors, a set of three cables for the motor, the encoder, and the electromagnetic brake is provided.

*1 Use the cable for encoder when the length of the encoder cable of motor is not enough.
*2 Only when the motor is the electromagnetic brake type.
memo When installing the motor on a moving part, use a flexible cable offering excellent flexibility.

- Connection cable set

For motor/encoder

Model	Length [m (ft.)]
CC005VZF2	$0.5(1.6)$
CC010VZF2	$1(3.3)$
CC015VZF2	$1.5(4.9)$
CC020VZF2	$2(6.6)$
CC025VZF2	$2.5(8.2)$
CC030VZF2	$3(9.8)$
CC040VZF2	$4(13.1)$
CC050VZF2	$5(16.4)$
CC070VZF2	$7(23.0)$
CC100VZF2	$10(32.8)$
CC150VZF2	$15(49.2)$
CC200VZF2	$20(65.6)$

For motor/encoder/electromagnetic brake

Model	Length [m (ft.)]
CC005VZFB2	$0.5(1.6)$
CC010VZFB2	$1(3.3)$
CC015VZFB2	$1.5(4.9)$
CC020VZFB2	$2(6.6)$
CC025VZFB2	$2.5(8.2)$
CC030VZFB2	$3(9.8)$
CC040VZFB2	$4(13.1)$
CC050VZFB2	$5(16.4)$
CC070VZFB2	$7(23.0)$
CC100VZFB2	$10(32.8)$
CC150VZFB2	$15(49.2)$
CC200VZFB2	$20(65.6)$

- Flexible connection cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC005VZR2	$0.5(1.6)$
CC010VZR2	$1(3.3)$
CC015VZR2	$1.5(4.9)$
CC020VZR2	$2(6.6)$
CC025VZR2	$2.5(8.2)$
CC030VZR2	$3(9.8)$
CC040VZR2	$4(13.1)$
CC050VZR2	$5(16.4)$
CC070VZR2	$7(23.0)$
CC100VZR2	$10(32.8)$
CC150VZR2	$15(49.2)$
CC200VZR2	$20(65.6)$

For motor/encoder/electromagnetic brake

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC005VZRB2	$0.5(1.6)$
CC010VZRB2	$1(3.3)$
CC015VZRB2	$1.5(4.9)$
CC020VZRB2	$2(6.6)$
CC025VZRB2	$2.5(8.2)$
CC030VZRB2	$3(9.8)$
CC040VZRB2	$4(13.1)$
CC050VZRB2	$5(16.4)$
CC070VZRB2	$7(23.0)$
CC100VZRB2	$10(32.8)$
CC150VZRB2	$15(49.2)$
CC200VZRB2	$20(65.6)$

Extension cable set/Flexible extension cable set (For AZM14, AZM15, AZM24, AZM26)

These cables are used when extending the connection cable.
Use if the length of the connection cable used is not enough when extending the distance between a motor and a driver.

* Use the connection cable used.
memo - When installing the motor on a moving part, use a flexible cable offering excellent flexibility.
- When extending the wiring length by connecting an extension cable to the connection cable, keep the total cable length to 20 m (65.6 ft .) or less.
- Connection cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZ2FT	$1(3.3)$
CC020VZ2FT	$2(6.6)$
CC030VZ2FT	$3(9.8)$
CC050VZ2FT	$5(16.4)$
CC070VZ2FT	$7(23.0)$
CC100VZ2FT	$10(32.8)$
CC150VZ2FT	$15(49.2)$

- Flexible connection cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZ2RT	$1(3.3)$
CC020VZ2RT	$2(6.6)$
CC030VZ2RT	$3(9.8)$
CC050VZ2RT	$5(16.4)$
CC070VZ2RT	$7(23.0)$
CC100VZ2RT	$10(32.8)$
CC150VZ2RT	$15(49.2)$

- Extension cable set/Flexible extension cable set (For AZM46, AZM48, AZM66, AZM69)

These cables are used when extending the connection cable.
Use if the length of the connection cable used is not enough when extending the distance between a motor and a driver.
It is a set of two cables for the motor and the encoder. For the cable set of electromagnetic brake motors, a set of three cables for the motor, the encoder, and the electromagnetic brake is provided.

Extension cable set/ Connection cable set *1/
Flexible extension cable set Flexible connection cable set *1

*1 Use the connection cable used.
*2 Only when the motor is the electromagnetic brake type.
memo - When installing the motor on a moving part, use a flexible cable offering excellent flexibility.

- When extending the wiring length by connecting an extension cable to the connection cable, keep the total cable length to 20 m (65.6 ft .) or less.
- Extension cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZFT	$1(3.3)$
CC020VZFT	$2(6.6)$
CC030VZFT	$3(9.8)$
CC050VZFT	$5(16.4)$
CC070VZFT	$7(23.0)$
CC100VZFT	$10(32.8)$
CC150VZFT	$15(49.2)$

For motor/encoder/electromagnetic brake

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZFBT	$1(3.3)$
CC020VZFBT	$2(6.6)$
CC030VZFBT	$3(9.8)$
CC050VZFBT	$5(16.4)$
CC070VZFBT	$7(23.0)$
CC100VZFBT	$10(32.8)$
CC150VZFBT	$15(49.2)$

- Flexible extension cable set

For motor/encoder

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZRT	$1(3.3)$
CC020VZRT	$2(6.6)$
CC030VZRT	$3(9.8)$
CC050VZRT	$5(16.4)$
CC070VZRT	$7(23.0)$
CC100VZRT	$10(32.8)$
CC150VZRT	$15(49.2)$

For motor/encoder/electromagnetic brake

Model	Length $[\mathrm{m}(\mathrm{ft})]$.
CC010VZRBT	$1(3.3)$
CC020VZRBT	$2(6.6)$
CC030VZRBT	$3(9.8)$
CC050VZRBT	$5(16.4)$
CC070VZRBT	$7(23.0)$
CC100VZRBT	$10(32.8)$
CC150VZRBT	$15(49.2)$

8-2 I/O signal cable

This cable is a shielded cable for the driver control I/O that has good noise immunity. The ground wire useful to grounding is extracted from both ends of the cable.
Select the cable suitable for the number of I/O signals connected.
Model list

Cable length $[\mathrm{m} \mathrm{(ft)]}$.	Number of lead wires			
	6 pcs.	CC06D005B-1	CC10D005B-1	CC12D005B-1
$1(3.3)$	CC06D010B-1	CC10D010B-1	CC12D010B-1	CC16D005B-1
$1.5(4.9)$	CC06D015B-1	CC10D015B-1	CC12D015B-1	CC16D015B-1
$2(6.6)$	CC06D020B-1	CC10D020B-1	CC12D020B-1	CC16D020B-1

9 Accessories

9-1 Pulse signal converter for noise immunity

This product converts a pulse signal, which is output from the open collector output, to a pulse signal for good noise immunity by outputting the pulse signal again from the differential output.
Model: VCSO6

9-2 Relay contact protection parts/circuits

- CR circuit for surge suppression

This product is effective to suppress the surge which occurs in a relay contact part. Use it to protect the contacts of the relay or switch.
Model: EPCR1201-2

- CR circuit module

This product is effective to suppress the surge which occurs in a relay contact part. Use it to protect the contacts of the relay or switch.
Four pieces of CR circuit for surge suppression are mounted on the compact circuit, and this product can be installed to the DIN rail. This product can make the wiring easily and securely since it also supports terminal block connection.

Model: VCSO2

This part explains how to control via EtherCAT communication.

Table of contents

1 Guidance 89
2 Communications specifications 92
2-1 EtherCAT communication interface. 92
2-2 CiA402 drive profile 92
2-3 EtherCAT state machine (ESM) 93
2-4 Process data object (PDO) 93
2-5 Service data object (SDO) 96
2-6 Synchronous mode of EtherCAT communication 97
2-7 Distributed clocks 97
2-8 Emergency message 97
3 Drive profile 98
3-1 Drive state machine 98
3-2 Operation mode 101
3-3 Cyclic synchronous position mode (CSP) 101
3-4 Profile position mode (PP) 103
3-5 Cyclic synchronous velocity mode (CSV) 114
3-6 Profile velocity mode (PV) 117
3-7 Homing mode (HM) 120
4 Function 134
4-1 Touch probe 134
4-2 Resolution 137
4-3 Wrap function 138
4-4 Operating current and stop current 138
4-5 Maintenance commands 139
4-6 Assignment of I/O function 140
5 Position coordinate management 151
5-1 Overview of position coordinate management 151
5-2 Position coordinate origin 155
5-3 Parameters related to ABZO sensor 156
5-4 Mechanism settings parameter 157
5-5 Initial coordinate generation \& wrap coordinate parameter 158
6 Save of parameters 164
7 Object dictionary 165
7-1 Composition of the object dictionary... 165
7-2 Objects of the CoE communication area 166
7-3 Objects of the profile area 171
7-4 Objects of the manufacturer-specific area 181

Setting of data and parameters

Data and parameters described in this " 4 EtherCAT communication" can be set using the MEXE02 in addition to EtherCAT communication.

- Notation rules

- Timing to update

In this part, each update timing is represented in an alphabet.

Notation	Update timing	Description
A	Update immediately	Recalculation and setup are immediately executed when the parameter is written.
B	Update after operation stop	Recalculation and setup are executed when the operation is stopped.
C	Update after executing Configuration	Recalculation and setup are executed after Configuration is executed or executing write batch non-volatile memory and turning on the control power supply again.
D	Update after turning on the control power supply again	Recalculation and setup are executed after executing write batch non-volatile memory and turning on the control power supply again.

Guidance

If you are new to this product, read this chapter to understand the operating methods along with the operation flow. This is an example how to operate the motor via EtherCAT communication.

- Operating conditions

This operation is performed under the following conditions.

- Number of drivers connected: one unit - Node address: 1

Note

- Before operating the motor, check the condition of the surrounding area to ensure safety.
- Before starting based on the guidance, import the ESI file to the setting tool of the EtherCAT master and register the system configuration in advance. For details, contact your nearest Oriental Motor sales office.

STEP 1

AC power input driver

The figure shows models for single-phase 200 to 240 VAC input.

*1 Purchase it separately.
*2 Use the cable for encoder when the length of the encoder cable of motor is not enough.
■ DC power input driver

STEP 2 Make preparations for operation.

Refer to "Before starting operation" in the AZ Series OPERATING MANUAL Function Edition.

STEP $3 \quad$ Set an node address.

Set an node address using the node address setting switches (ECAT ID $\times 10, \times 1$) of the driver.

1. Set the node address setting switches as shown next.

Settings: $1(\times 10: 0, \times 1: 1)$

AC power input driver

DC power input driver

2. Turn on the control power supply again.

Note Be sure to turn off the control power supply of the driver before setting the switches. If the switches are set while the control power supply is in an on-state, the new setting will not be enabled.

STEP 4 Operate the motor.

Put the motor into an excitation state via EtherCAT communication to input the operation command.

STEP $5 \quad$ Were you able to operate the motor properly?

How did it go? Were you able to operate the motor properly? If the motor does not operate, check the following points.

- Is the PWR/ALM LED blinking in red?

An alarm is being generated. Refer to p. 204 for details.

- Are the power supply, the motor and the EtherCAT communication cable connected securely?
- Is the node address set correctly?
- Is the ERR LED blinking in red?

A communication error is being detected. Refer to p. 22 (AC power input driver) or p. 58 (DC power input driver) for details.

2 Communications specifications

2-1 EtherCAT communication interface

Item	Description
Communications standards	IEC 61158 Type12
Physical layer/Protocol	100 BASE-TX (IEEE 802.3)
Transmission rate	100 Mbps
Communication cycle	- Free run mode: 1 ms or more - Sync manager 2 event synchronization mode: 1 ms or more - DC mode: $0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 3 \mathrm{~ms}, 4 \mathrm{~ms}, 5 \mathrm{~ms}, 6 \mathrm{~ms}, 7 \mathrm{~ms}, 8 \mathrm{~ms}$
Communication port/Connector	RJ45 $\times 2$ (shielded) ECAT IN: EtherCAT input ECAT OUT: EtherCAT output
Topology	Daisy chain (Up to 65,535 nodes)
Process data	Variable PDO mapping
Sync manager	- SMO: Mailbox output - SM1: Mailbox input - SM2: Process data output - SM3: Process data input
Mailbox (CoE)	- Emergency message - SDO request - SDO response - SDO information
Synchronization mode	- Free run mode (asynchronous) - Sync manager 2 event synchronization mode - DC mode (SYNCO event synchronization)
Device profile	IEC 61800-7 CiA402 drive profile

2-2 CiA402 drive profile

Item	Description
Operation mode	The following modes are supported. \bullet • Profile position mode (PP) \bullet
• Profile velocity mode (PV) • Homing mode (HM) \bullet • Cyclic synchronous position mode (CSP) \bullet •Cyclic synchronous velocity mode (CSV)	

2-3 EtherCAT state machine (ESM)

The EtherCAT state machine (ESM) is controlled by the EtherCAT master.

ESM state	SDO communication	Transmit PDO (TxPDO)	Receive PDO (RxPDO)	Status
Init	Not possible	Not possible	Not possible	During initialization. Communication is not possible.
Pre-operational	Possible	Not possible	Not possible	The mailbox communication (SDO) is possible. The process data communication (PDO) is not possible.
Safe-operational	Possible	Possible	Not possible	The mailbox communication and transmit PDO are possible. The status of the driver can be sent to the EtherCAT master by the transmit PDO.
Operational	Possible	Possible	Possible	The mailbox communication, transmit PDO, and receive PDO are possible. Commands can be sent from the EtherCAT master to the driver by the PDO communication.

2-4 Process data object (PDO)

The process data object (PDO) is used in real-time data communication of EtherCAT communication. There are two types of PDO; transmit PDO (TxPDO) and receive PDO (RxPDO).
The transmit PDO (TxPDO) is to send data to the EtherCAT master from the driver. The receive PDO (RxPDO) is to receive data from the EtherCAT master to the driver.
Contents, which are sent and received using the PDO, are set by the PDO mapping object and the sync manager 2 and sync manager 3 PDO assignment objects.
The PDO mapping is to set the PDO mapping object.
Sync manager 2 PDO assignment and sync manager 3 PDO assignment are to set the PDO mapping object that performs communication actually.
The PDO mapping object is consisted of 4 bytes that are indexes of assigned object (Index), sub-index (Sub-index), and data length (Length). Only data of 08h (1 byte), 10h (2 bytes), and 20 h (4 bytes) can be set in the data length.

Index	Sub-index	Data length
(2 bytes)	(1 byte)	(1 byte)

PDO mapping object

Up to 16 objects can be mapped in a single PDO.

Receive PDO mapping object		Transmit PDO mapping object	
Receive PDO	Index	Transmit PDO	Index
RxPDO1	1600 h	TxPDO1	1A00h
RxPDO2	1601 h	TxPDO2	1A01h

Objects to be mapped in the PDO are as follows.

Objects of profile area	Objects of manufacturer-specific area
6000 h to 67FFh	4000h to 4FFFh

memo The configuration of objects is as follows.

Index (Hex)	Object	Overview
1000h to 1FFFh	CoE communication area	CoE communication area
2000h to 3FFFh		
4000h to 4FFFh		Not used
		Driver object
5000h to 5FFFh		Not used
6000h to 67FFh	Profile area	Profile area

- Sync manager 2 and sync manager 3 PDO assignment objects

The SM (sync manager channel) PDO assignment objects set the relationship between the PDO and sync manager.
The "Sync manager 2 PDO assignment (1C12h)" is the assignment object dedicated to the receive PDO.
The "Sync manager 3 PDO assignment (1C13h)" is the assignment object dedicated to the transmit PDO.
Objects of up to 64 bytes can be assigned.

- Setting of PDO mapping object

The PDO mapping can be changed when the ESM is pre-operational. Change the PDO mapping in the following steps.

1. Set the number of entries of the sync manager 2 and sync manager 3 PDO assignment objects to 0 .
2. Set the number of entries of the PDO mapping object to 0 .
3. Change the PDO mapping object.
4. Change the number of entries of the PDO mapping object to the number of objects mapped in the step 3 .
5. Change the sync manager 2 and sync manager 3 PDO assignment objects.
6. Change the number of entries of the sync manager 2 and sync manager 3 PDO assignment objects to the number assigned in the step 5.

Example of PDO mapping

This section introduces an example of PDO mapping. Data of 2 bytes and 4 bytes are little-endian.
With the sync manager 2 and sync manager 3 PDO assignment objects, set the mapping of PDO communication by selecting the PDO mapping object that performs communication actually.

2-5 Service data object (SDO)

When read and write of the parameter object is performed, or monitor is executed via EtherCAT communication, the "Service data object (SDO)" is used. The SDO is not synchronized to EtherCAT communication cycles, but it is sent and received in an arbitrary timing. The setting of PDO mapping is also performed using the SDO.

SDO abort code

If an error occurs while the SDO is sent and received, an abort code is sent back. Abort code lists are shown in the table.

Abort code	Description
05030000 h	Toggle bit did not inverted.
05040000 h	SDO protocol timeout
05040001 h	Client/server command specifier is not enabled or unknown.
05040005 h	Out of range of memory
06010000 h	Unsupported access to an object
06010001 h	Read access was performed to a write only object.
06010002 h	Write access was performed to a read only object.
06020000 h	The object does not exist.
06040041 h	The object can not be mapped in the PDO.
06040042 h	The number of the PDO mappings or the data length exceeded the limitation.
06040043 h	General parameter incompatibility
06040047 h	General internal incompatibility in the device
06060000 h	Access failed due to a hardware error
06070010 h	Data type does not match, length of service parameter does not match.
06070012 h	Data type does not match, length of service parameter is too long.
06070013 h	Data type does not match, length of service parameter is too short.
0609001 h	Sub-index does not exist.
06090030 h	The setting range of the parameter was exceeded. (For write access)
06090031 h	The value of the write parameter is too large.
06090032 h	The value of the write parameter is too small.
06090036 h	The maximum value is less than the minimum value.
0800 0000h	General error
08000020 h	Data cannot be transferred or stored to the application.
08000021 h	Data cannot be transferred or stored to the application because of local control.
08000022 h	Data cannot be transferred or stored to the application in the present device status.
08000023 h	Object dictionary cannot be generated or object dictionary does not exist.
0	
0	

2-6

Synchronous mode of EtherCAT communication

This product is compatible with three modes of EtherCAT communication.

- Free run mode

The driver operates in asynchronous to EtherCAT communication. The communication cycle of the Free run mode is 1 ms or more.

- Sync manager 2 event synchronization mode

The driver operates in synchronization with EtherCAT communication. An application is synchronized with the sync manager 2 event. Whenever the driver receives the process data output (RxPDO), the sync manager 2 event is generated.
The communication cycle of the sync manager 2 event synchronization mode is 1 ms or more.

- DC mode (SYNC0 event synchronization)

The driver operates in synchronization with EtherCAT communication. An application is synchronized with the SYNC0 event.
The communication cycle of the DC mode is $0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}$, or 1 to 8 ms (in 1 ms unit).

2-7 Distributed clocks

The "Distributed clocks (DC)" is a method to synchronize an operation by sharing the same clock between the EtherCAT master and driver.
The interruption signal (SYNC0) is output at a precise interval based on the DC. In the DC mode, an application is executed in synchronization with SYNCO.

2-8 Emergency message

If an error occurs in the driver, an emergency message is sent to the EtherCAT master using the mailbox communication.
The emergency message is sent only once per error.
The emergency message consists of the following 8 bytes.

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Emergency error code	Error register object (1001h)	Manufacturer-specific error definition field					

Emergency message for when an alarm is generated

If an alarm is generated in the driver, an emergency message is sent to the EtherCAT master using the mailbox communication. The emergency message for when the alarm is generated consists of the following 8 bytes.

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Emergency error code (FFOOh)		Error register object (1001h)	Manufacturer-specific error definition field				
		0	Alarm code		0		

The emergency error code is FFOOh regardless of the alarm contents.
The byte 2 is the same value as the error register object.
The byte4 is the alarm code. Refer to p. 205 for alarm code.

Emergency code for when the ESM transition error is generated

If the transition from pre-operational to safe-operational was failed in the ESM, the following emergency code is sent.

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
Emergency error code (A00Oh)	Channel (02h)	Diagnosis data					
		$0 A h$	0				

If the transition from pre-operational to safe-operational was requested during the following status, this emergency code is generated. Check the contents, and reconsider the setting and other conditions.

- The unsupported communication cycle in the DC mode is set.
- The object that mapping is not possible is mapped in the PDO mapping.
- The object for TxPDO is mapped in RxPDO. Or the object for RxPDO is mapped in TxPDO.

3 Drive profile

3-1 Drive state machine

The drive state machine is controlled by the "Controlword object (6040h)." The status of each state can be checked by the "Statusword object (6041h)."

State	Status	Motor status	Parameter setting
Not ready to switch on	The control power supply was turned on, and the initialization processing is executing.	Non-excitation	Not possible to set
Switch on disabled	The initialization was complete.	Non-excitation	Possible to set
Ready to switch on	A state that the main power supply is possible to turn on.	Non-excitation	Possible to set
Switched on	A state that the main power supply was turned on.	Non-excitation	Possible to set
Operation enabled	The motor is in an excitation state, and the operation function is enabled.	Excitation	Possible to set
Quick stop active	The Quick stop command was received, and the operation stop is processing.	Excitation	Possible to set
Fault reaction active	An alarm was generated in the driver, and the operation stop is processing.	Excitation	Possible to set
Fault	An alarm is present in the driver.	Non-excitation	Possible to set

Note After moving to "Operation enabled," 250 ms is required until the motor is excited and the preparation for operation is completed. The motor does not start running even if the operation command is input before the preparation for operation is completed. Input the operation command after 250 ms have elapsed from having moved to "Operation enabled" or after the DCMD-RDY output is turned ON.

- State transition of the drive state machine

The drive state machine is controlled by the "Controlword object (6040h)."

- Controlword object (6040h)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8						
Manufacturer specific (ms)						Reserved	oms						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
Fault reset	Operation mode specific (oms)									Enable operation	Quick stop	Enable voltage	Switch on

- State transition commands by the controlword

State control command	Bit7	Bit3	Bit2	Bit1	Bit0	Transition number in the figure
Shutdown	-	-	1	1	0	$2,6,8$
Switch on	-	0	1	1	1	$3 *$
Switch on + enable operation	-	1	1	1	1	$3+4^{*}$
Disable voltage	-	-	-	0	-	$7,9,10,12$
Quick stop	-	-	0	1	-	$7,10,11$
Disable operation	-	0	1	1	1	5
Enable operation	-	1	1	1	1	4,16
Fault reset	0 to 1	-	-	-	-	15

* When the following conditions are not satisfied, the state will not move from "Ready to switch on" to "Switched on" even if the command is received.
-The status of the ESM is operational.
- The main power is turned ON.
-The FREE input is OFF.
-The CON input is OFF.
-The ETO-MON output is OFF.
- Test operation (remote operation) is not being executed using the MEXEO2.
- State transition other than the above

Transition number in the figure	Transition event
0	Moves automatically when the control power supply is turned on.
1	Moves automatically when the initialization of the driver is complete.
2	Moves after stopping if the Quick stop action is "Moves to switch on disabled."
13,14	Moves if an alarm is generated.

If the drive state machine is in a state of any of "Switched on," "Operation enabled," or "Quick stop active," the state changes when an event in the table next is generated.

State	Motor operation	Event	Action
Switched on	During stop	- The ESM moves to other than OP. - The main power was cut off. - The driver is in the power removal status. - The FREE input is ON.	Moves to "Ready to switch on." (Transition number 6)
Operation enabled	During stop	- The ESM moves to other than OP. - The main power was cut off. - The driver is in the power removal status. - The FREE input is ON.	Moves to "Ready to switch on." (Transition number 8) The motor becomes in a nonexcitation state.
	During operation	The ESM moves to other than OP.	The alarm of network bus error is generated (alarm code 81h). After moving from "Fault reaction active" to "Fault," the motor becomes in a non-excitation state. (Transition number 13,14)

State	Motor operation	Event	Action
Operation enabled	During operation	The main power was cut off.	The alarm of main power supply off is generated (alarm code 23h). After moving from "Fault reaction active" to "Fault," the motor becomes in a non-excitation state. (Transition number 13,14)
		- The driver is in the power removal status. - The FREE input is ON.	Moves to "Ready to switch on." (Transition number 8) The motor becomes in a nonexcitation state.
Quick stop active	During stop	- The ESM moves to other than OP. - The main power was cut off. - The driver is in the power removal status. - The FREE input is ON.	Moves to "Switch on disabled." (Transition number 12) The motor becomes in a nonexcitation state.
	During operation	The ESM moves to other than OP.	The alarm of network bus error is generated (alarm code 81h). After moving from "Fault reaction active" to "Fault," the motor becomes in a non-excitation state. (Transition number 13,14)
		The main power was cut off.	The alarm of main power supply off is generated (alarm code 23h). After moving from "Fault reaction active" to "Fault," the motor becomes in a non-excitation state. (Transition number 13,14)
		- The driver is in the power removal status. - The FREE input is ON.	Moves to "Switch on disabled." (Transition number 12) The motor becomes in a nonexcitation state.

■ Status output of the drive state machine
The status of the drive state machine is output by the "Statusword object (6041h)."

- Statusword object (6041h)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific (ms)	Operation mode specific (oms)	Internal limit active	Target reached	Remote	ms		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enabled	Switched on	Ready to switch on

- Status output of the Statusword

State	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Start	0	0	0	0	0	0	0
Not ready to switch on	0	0	0	0	0	0	0
Fault	0	1	$-^{*}$	1	0	0	0
Fault reaction active	0	1	$-^{*}$	1	1	1	1
Switch on disabled	1	1	$-^{*}$	0	0	0	0
Ready to switch on	0	1	$-^{*}$	0	0	0	1
Switched on	0	1	$-^{*}$	0	0	1	1
Operation enabled	0	1	$-^{*}$	0	1	1	1
Quick stop active	0	0	$-^{*}$	0	1	1	1

[^7]
3-2 Operation mode

The driver supports the operation modes listed below.

- Cyclic synchronous position mode (CSP)
- Profile position mode (PP)
- Cyclic synchronous velocity mode (CSV)
- Profile velocity mode (PV)
- Homing mode (HM)

Switching of operation modes

The operation mode can be switched by the "Modes of operation (6060h)."

Setting value of the operation mode	Operation mode
0 (Initial value)	Operation function disable
1	Profile position mode (PP)
3	Profile velocity mode (PV)
6	Homing mode (HM)
8	Cyclic synchronous position mode (CSP)
9	Cyclic synchronous velocity mode (CSV)

Switch the operation mode while an operation is stopped. When it was switched during operation, the new operation mode will be enabled after the operation is stopped.
The operation mode which is enabled can be checked in the "Modes of operation display (6061h)."

3-3 Cyclic synchronous position mode (CSP)

In the cyclic synchronous position mode, a path generation (profile generation) is performed by the EtherCAT master. By cyclic synchronous communication, when the "Target position (607Ah)" is sent from the EtherCAT master to the driver, the driver performs position controls.
Use the cyclic synchronous position mode when EtherCAT communication is performed in the DC mode. If the cyclic synchronous position mode is used in the free run mode or sync manager2 event synchronization mode, the speed fluctuation or vibration may increase.

Note - Since the position is controlled by the EtherCAT master in the cyclic synchronous position mode, if the operation is stopped without the EtherCAT master, the position deviation may cause. When inputting the stop signal such as the STOP input or the FREE input or when executing the power removal function, be sure to perform the following operations to clear the position deviation. If the stop signal is turned OFF while the position deviation is remained or if the ETO-CLR input is turned ON after the power removal status is released, the motor may start running suddenly.

- Execute the operation stop from the EtherCAT master.
- Clear the position deviation between the EtherCAT master and driver.
- Since the position is controlled by the EtherCAT master in the cyclic synchronous position mode, executing the position preset (P-PRESET) in the driver during the motor excitation state will cause the motor to start suddenly or an alarm of command pulse error to generate. Stop the motor execution before executing the position preset (P-PRESET) in the driver.

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6040 h	00 h	Controlword	U16	RW	RxPDO	-	0000h to FFFFh (Initial value: 0000 h$)$	A
6041 h	00 h	Statusword	U16	RO	TxPDO	-	-	-
6060 h	00 h	Modes of operation	INT8	RW	RxPDO	O	0 (Initial value), $1,3,6,8,9$ $\left(\begin{array}{l}\text { "Switching of operation } \\ \text { modes") }\end{array}\right.$	B
6061 h	00 h	Modes of operation display	INT8	RO	TxPDO	-		-
6062 h	00 h	Position demand value [step]	INT32	RO	TxPDO	-	-	

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6064h	00h	Position actual value [step]	INT32	RO	TxPDO	-	-	-
607Ah	00 h	Target position [step]	INT32	RW	RxPDO	-	$-2,147,483,648$ to $2,147,483,647$ (Initial value: 0$)$	A
607Dh	01 h	Min. position limit [step]	INT32	RW	No	O	$-2,147,483,648$ to $2,147,483,647$ (Initial value: $-2,147,483,648)$	A
	02h	Max. position limit [step]	INT32	RW	No	O	$-2,147,483,648$ to $2,147,483,647$ (Initial value: $2,147,483,647)$	A

- Controlword of the cyclic synchronous position mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific (ms)					Reserved	oms	Halt
-	-	-	-	-		-	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Fault reset	Operation mode specific (oms)			Enable operation	Quick stop	Enable voltage	Switch on
	-	-	-				

Details of controlword

Bit	Name	Value	Description
8	Halt	0	Operation allowed
		1	Stop operation. The stopping method is "Immediate stop."

For the bit7 and bit3 to bit0, refer to "State transition of the drive state machine" on p.99.

Statusword of the cyclic synchronous position mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific		Operation mode specific		Internal		Remote	ms
TLC	-	Following error	Target position ignored		-	Ren	Bit4
Bit7	Bit6	Bit5	Bit3	Bit2	Bit1	Bit0	
Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enabled	Switched on	Ready to switch on

Details of statusword

Bit	Name	Value	Description
15	TLC	0	A load does not reach the upper limit of the motor output torque.
13	Following error	1	A load reached the upper limit of the motor output torque.
		0	Position deviation error not present

Bit	Name	Value	Description
		0	The function limitation by the internal limit is not in an active state.

For the bit6 to bit0, refer to "Status output of the drive state machine" on p.100.

3-4 Profile position mode (PP)

The profile position mode operates in the internal profile of the driver. A path generation (profile generation) is performed in the driver. The target position, velocity, acceleration and others are set in the EtherCAT master.

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6040h	00h	Controlword	U16	RW	RxPDO	-	0000h to FFFFh (Initial value: 0000h)	A
6041h	00h	Statusword	U16	RO	TxPDO	-	-	-
6060h	00h	Modes of operation	INT8	RW	RxPDO	\bigcirc	$\begin{aligned} & 0 \text { (Initial value), } 1,3,6,8,9 \\ & (\Rightarrow \text { p.101) } \end{aligned}$	B
6061h	00h	Modes of operation display	INT8	RO	TxPDO	-	-	-
6062h	00h	Position demand value [step]	INT32	RO	TxPDO	-	-	-
6064h	00h	Position actual value [step]	INT32	RO	TxPDO	-	-	-
607Ah	00h	Target position [step]	INT32	RW	RxPDO	-	$\begin{aligned} & -2,147,483,648 \text { to } 2,147,483,647 \\ & \text { (Initial value: 0) } \end{aligned}$	A
607Dh	01h	Min. position limit [step]	INT32	RW	No	0	$\begin{array}{\|l\|} \hline-2,147,483,648 \text { to } 2,147,483,647 \\ \text { (Initial value: }-2,147,483,648 \text {) } \end{array}$	A
	02h	Max. position limit [step]	INT32	RW	No	0	$\begin{aligned} & -2,147,483,648 \text { to } 2,147,483,647 \\ & \text { (Initial value: } 2,147,483,647 \text {) } \end{aligned}$	A
6081h	00h	Profile velocity [Hz]	U32	RW	RxPDO	0	0 to 4,000,000 (Initial value: 10,000)	B
6083h	00h	Profile acceleration [step/s ${ }^{2}$]	U32	RW	RxPDO	0	1 to 1,000,000,000 (Initial value: 300,000)	B
6084h	00h	Profile deceleration [step/s ${ }^{2}$]	U32	RW	RxPDO	\bigcirc	1 to 1,000,000,000 (Initial value: 300,000)	B
4142h	00h	Starting speed [Hz]	INT32	RW	No	0	0 to 4,000,000 (Initial value: 5,000)	B
414Fh	00h	Wrap positioning mode	U8	RW	RxPDO	\bigcirc	0: Wrap absolute positioning 1:Wrap proximity 2: Wrap forward direction 3:Wrap reverse direction (Initial value: 0)	B

Controlword of the profile position mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific (ms)					Reserved	oms	Halt
-	Wrap	Push	Base position of Rel	-		Change on set point	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Fault reset	Operation mode specific (oms)			Enable operation	Quick stop	Enable voltage	Switch on
	Abs/Rel	Change set immediately	New set point				

Details of controlword

Bit	Name	Value	Description
14	Wrap	1	Wrap absolute positioning operation After the "Wrap" is set to 1 , when an operation is started by setting the "New set point (6040 h : bit4)" to 1, wrap absolute positioning operation is performed. The operating method is in accordance with the setting of the "Wrap positioning mode (414Fh)."
13	Push	1	Push-motion positioning operation After the "Push" is set to 1 , when an operation is started by setting the "New set point (6040 h : bit4)" to 1 , push-motion positioning operation is performed. The "Push current (4121h)" is applied to the motor current. When the "Halt (6040 h : bit8)" is set to 1 , or when the STOP input is turned ON, the operation is stopped. The "Stop current (4128h)" is applied to the motor current at standstill.
12	Base position of Rel	0	Incremental positioning operation (based on command position) Positioning operation of the set travel amount is performed from the present command position. The travel amount is set with the "Target position (607Ah)."
		1	Incremental positioning operation (based on actual position) Positioning operation of the set travel amount is performed from the present actual position. The travel amount is set with the "Target position (607Ah)."
10	Reserved	-	Reserved
9	Change on set point	-	Not supported.
8	Halt	0	Operation allowed
		1	Stops operation. The stopping method is in accordance with the setting of the "Halt option code (605Dh)."
6	Abs/Rel	0	Absolute positioning operation The "Target position (607Ah)" is the target position of absolute positioning operation.
		1	Incremental positioning operation The "Target position (607Ah)" is the target position of incremental positioning operation.
5	Change set immediately	0	When the "New set point (6040h: bit4)" is changed from 0 to 1 during operation, the new operation command is stored. When the present operation is complete, the stored new operation command is started.
		1	When the "New set point (6040h: bit4)" is changed from 0 to 1 during operation, the new operation command is immediately applied.

Bit	Name	Value	Description
4	New set point	$0 \rightarrow 1$	Starting of positioning operation Before starting the operation, select the "Wrap (6040h: bit14)", "Push (6040h: bit13)", "Base position of Rel (6040h: bit12)" and "Abs/Rel (6040h: bit6)." If positioning operation is executed in a state where the operation is stopped by changing the "Halt (6040 h : bit8)" to 1, change the "Halt (6040h: bit8)" from 1 to 0 first, and then leave an interval at more than double of the communication cycle before changing the "New set point ($6040 \mathrm{~h}:$ bit4)" from 0 to 1 . The operation may not be started unless the interval at more than double of the communication cycle is left. The command cannot be received in the following status, and the operation is not started. - "Halt (6040h: bit8)" has been 1 . - The STOP input is ON. - The drive state machine is other than "Operation enabled." - The motor is in a non-excitation state.

For the bit7 and bit3 to bit0, refer to "State transition of the drive state machine" on p.99.

Statusword of the profile position mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific		Operation mode specific		Internal	Target	Remote	ms
TLC	-	Following error	Set point acknowledge		reached	Bit5	Bit4
Bit7	Bit6	Bit3	Bit2	Bit1	Bit0		
Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enabled	Switched on	Ready to switch on

Details of statusword

Bit	Name	Value	Description
15	TLC	0	A load does not reach the upper limit of the motor output torque.
		1	A load reached the upper limit of the motor output torque. When push-motion operation is performed, use this signal as the completion signal of push-motion operation.
13	Following error	0	Position deviation error not present
		1	Position deviation error present The position deviation exceeded the value set in the "Following error window (6065 h)." The value changes to 0 when the alarm of excessive position deviation (alarm code 10h) or the alarm of overload (alarm code 30 h) is cleared.
12	Set point acknowledge	0	The operation start by the "New set point (6040h: bit4)" has not been received.
		1	The operation start by the "New set point (6040h: bit4)" was received. When the "New set point (6040 h : bit4)" is set to 1 and the operation start is received, the "Set point acknowledge" changes to 1. When the "New set point (6040h: bit4)" is set to 0, the "Set point acknowledge" also changes to 0 .
11	Internal limit active	0	The function limitation by the internal limit is not in an active state.
		1	The function limitation by the internal limit became an active state. The value is 1 when any of the following internal limit function is activated. - Limit sensor (FW-LS/RV-LS) - Operation prohibition input (FW-BLK/RV-BLK) - Software limit - Mechanical limit

Bit	Name	Value	Description
		0	- When the "Halt (6040h: bit8)" is 0 : The positioning operation is not complete. - When the "Halt (6040h: bit8)" is 1: During deceleration stop.
10	Target reached	1	- When the "Halt (6040h: bit8)" is 0 : After positioning operation is properly completed, the value changes to 1 when the feedback position has converged in a range of the Position window (6067 h) with respect to the command position. It does not change to 1 when the positioning operation was interrupted on the way. It changes to 0 if the operation is started from a state where the positioning was complete. - When the "Halt (6040h: bit8)" is 1 : The value changes to 1 when the operation velocity demand value becomes 0 .
9	Remote	1	The value becomes 1 when the initialization is complete.
7	Warning	0	Information not present When the causes of information are cleared, the "Warning" is automatically cleared to 0 .
		1	Information present.

For the bit6 to bit0, refer to "Status output of the drive state machine" on p.100.

■ Operation in the profile position mode

- Positioning operation

Positioning operation is started when the "Target position (607Ah)" is set and the "New set point (6040h: bit4)" is set to 1 .

Single set-point [When the "Change set immidiately (6040h: bit5)" is 1]
If the "New set point (6040h: bit4)" is set during operation, the new operation command is applied immediately.

Set of set-points [When the "Change set immidiately (6040h: bit5)" is 0]

If the "New set point (6040 h : bit4)" is set during operation, the new operation command is stored. When the present operation is complete, the stored new operation command is started.

- Push-motion positioning operation

After the "Push (6040h: bit13)" is set to 1 , when the "New set point (6040 h : bit4)" is set to 1 , push-motion positioning operation is started. If push-motion positioning operation is started, self-start operation (rectangular operation) is performed at the operating speed set in the "Profile velocity (6081h)."

Note

- When a mechanism installed to the motor pressed against a load, push-motion operation is performed while a position deviation of 2.7° generates. An alarm of overload may be generated if the operation is stopped in this state, so perform operation to return the actual position by 3.6° beofore push-motion operation is stopped.
- Do not perform push-motion operation with geared motors and DGII Series. Doing so may cause damage to the motor or gear part.
- When push-motion operation is stopped in a state where a load is pressed, set the "Operating current (4120h)" of the next operation to be executed, to a value in the "Push current (4121h)" or less. If a higher current value than the "Push current (4121h)" is set, the push current may increase when an operation is transited, causing an unexpected push force to apply.

When a mechanism installed to the motor had presses against a load

When a load is pressed, the "TLC (6041h: bit15)" of the statusword changes to 1 .
If the "Halt (6040 h : bit8)" of the controlword is set to 1 or the STOP input is turned ON, the operation is stopped and the push-motion status is canceled.

When a mechanism installed to the motor had not presses against a load

If the motor reaches the target position without pressing a load, the operation is complete. The "TLC (6041h: bit15)" does not change to 1 .

- Wrap absolute positioning operation

If the "New set point (6040h: bit4)" is changed to 1 after the "Target position (607Ah)" was set and the "Wrap (6040h: bit14)" was changed to 1 , wrap absolute positioning operation is started. With wrap absolute positioning operation, absolute positioning operation is performed regardless of the value of the "Abs/Rel (6040 h : bit6)."
memo When wrap absolute positioning operation is performed, set the "Wrap setting (41C7h)" to "1: Enable."

Operation mode of the profile position mode

The operation mode of the profile position mode is set with the "Controlword (6040h)" and the "Wrap positioning mode (414Fh)." The operation modes are listed in the table.

Operation mode	Wrap positioning mode (414Fh)	Controlword (6040h)			
		Push (Bit13)	Base position of Rel (Bit12)	Abs/Rel (Bit6)	
Absolute positioning	-	0	0	-	0
Incremental positioning (based on command position)	-	0	0	0	1
Incremental positioning (based on actual position)	-	0	0	1	1
Absolute positioning push-motion	-	0	1	-	0
Incremental positioning push-motion (based on command position)	-	0	1	0	1
Incremental positioning push-motion (based on actual position)	-	0	1	1	1
Wrap absolute positioning	0	1	0	-	-
Wrap proximity positioning	1	1	0	-	-
Wrap forward direction absolute positioning	2	1	0	-	-
Wrap reverse direction absolute positioning	3	1	0	-	-
Wrap absolute push-motion	0	1	1	-	-
Wrap proximity push-motion	1	1	1	-	-
Wrap forward direction push-motion	2	1	1	-	-
Wrap reverse direction push-motion	3	1	1	-	-

- Absolute positioning

Positioning operation is performed from the present position to the set target position. In the "Target position (607Ah)," set the target position on the coordinates with the home as a reference.

Example: When moving from the command position "1,000" to the target position "4,000"

Set 4,000 steps in the "Target position (607Ah)" to start absolute positioning operation.

- Incremental positioning (based on command position)

Positioning operation of the set travel amount is performed from the present command position. In the "Target position (607 Ah)," set the travel amount from the present command position to the target position.

Example: When moving from the command position "1,000" to the target position "4,000"
Set 3,000 steps in the "Target position (607Ah)" to start incremental positioning (based on command position) operation.

- Incremental positioning (based on actual position)

Positioning operation of the set travel amount is performed from the present actual position. In the "Target position (607Ah)," set the travel amount from the actual position.

Example: When moving 3,000 steps from the command position "1,000" and the actual position "900"
Set 3,000 steps in the "Target position (607Ah)" to start incremental positioning (based on actual position) operation. The command position and the actual position after completing the operation will be "3,900."

memo - The reference position of the operation based on the actual position varies depending on the load.

- If the command position and the actual position are different such as push-motion operation, the next operation can be started based on the actual position of the push position or others.

- Wrap absolute positioning

Positioning operation is performed to the target position within the wrap range. In the "Target position (607Ah)," set the target position within the wrap range. Refer to p .138 for the wrap function.

Example: When moving from the command position " 1,000 " to the target position "4,000" (Wrap setting range 1.0 rev, wrap offset ratio 50.00%)
Set the items in the table to start wrap absolute positioning operation.

Index	Name	Setting value
41 C 7 h	Wrap setting	1: Enable
41 C 9 h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	10
41 CBh	Initial coordinate generation \& wrap range offset ratio [1=0.01 \%]	5,000
414 Fh	Wrap positioning mode	$0:$ Wrap absolute positioning
607 Ah	Target position [step]	4,000

- Wrap proximity positioning

Positioning operation in the shortest distance is performed to the target position within the wrap range. In the "Target position (607Ah)," set the target position within the wrap range. Refer to p .138 for the wrap function.

Example: When moving from the command position "-4,000" to the target position "4,000" (Wrap setting range 1.0 rev , wrap offset ratio 50.00%)
Set the items in the table to start wrap proximity positioning operation.

Index	Name	Setting value
41 C 7 h	Wrap setting	1: Enable
41 C 9 h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	10
41 CBh	Initial coordinate generation \& wrap range offset ratio $[1=0.01 \%]$	5,000
414 Fh	Wrap positioning mode	$1:$ Wrap proximity
607 Ah	Target position [step]	4,000

- Wrap forward direction absolute positioning

Positioning operation in the forward direction is performed to the target position within the wrap range. In the "Target position (607Ah)," set the target position within the wrap range. Refer to p .138 for the wrap function.

Example: When moving from the command position "1,000" to the target position "-4,000" (Wrap setting range 1.0 rev, wrap offset ratio 50.00%)
Set the items in the table to start wrap forward direction absolute positioning operation.

Index	Name	Setting value
41 C 7 h	Wrap setting	1: Enable
41 C 9 h	Initial coordinate generation \& wrap setting range $[1=0.1 \mathrm{rev}]$	10
41 CBh	Initial coordinate generation \& wrap range offset ratio $[1=0.01 \%]$	5,000
414 Fh	Wrap positioning mode	2: Wrap forward direction
607 Ah	Target position [step]	$-4,000$

- Wrap reverse direction absolute positioning

Positioning operation in the reverse direction is performed to the target position within the wrap range. In the "Target position (607Ah)," set the target position within the wrap range. Refer to p .138 for the wrap function.

Example: When moving from the command position "1,000" to the target position "4,000" (Wrap setting range 1.0 rev , wrap offset ratio 50.00%)
Set the items in the table to start wrap reverse direction absolute positioning operation.

Index	Name	Setting value
41 C 7 h	Wrap setting	1: Enable
41 C 9 h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	10
41 CBh	Initial coordinate generation \& wrap range offset ratio [1=0.01 \%]	5,000
414 Fh	Wrap positioning mode	$3:$ Wrap reverse direction
607 Ah	Target position [step]	4,000

Orbit comparison of positioning operation

These are examples for when the wrap setting range is set to 1 rev and the wrap range offset ratio is set to 50%.
Operation mode Initial value \rightarrow The value set in the "Target position (607Ah)"

[^8]
3-5 Cyclic synchronous velocity mode (CSV)

In the cyclic synchronous velocity mode, a path generation (profile generation) is performed by the EtherCAT master. By cyclic synchronous communication, when the "Target velocity (60 FFh)" is sent from the EtherCAT master to the driver, the driver performs speed controls.

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6040h	00h	Controlword	U16	RW	RxPDO	-	0000h to FFFFh (Initial value: 0000h)	A
6041h	00h	Statusword	U16	RO	TxPDO	-	-	-
6060h	00h	Modes of operation	INT8	RW	RxPDO	0	$\begin{aligned} & 0 \text { (Initial value), } 1,3,6,8, \\ & 9(\Rightarrow \text { p.101) } \end{aligned}$	B
6061h	00h	Modes of operation display	INT8	RO	TxPDO	-	-	-
606Bh	00h	Velocity demand value [Hz]	INT32	RO	TxPDO	-	-	-
606Ch	00h	Velocity actual value [Hz]	INT32	RO	TxPDO	-	-	-
60FFh	00h	Target velocity [Hz]	INT32	RW	RxPDO	-	$\begin{aligned} & -4,000,000 \text { to } 4,000,000 \\ & \text { (Initial value: } 0 \text {) } \end{aligned}$	A

- Controlword of the cyclic synchronous velocity mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific (ms)					Reserved	oms	Halt
-	-	Type		-		-	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Fault reset	Operation mode specific (oms)			Enable operation	Quick stop	Enable voltage	Switch on
	-	-	-				

Details of controlword

Bit	Name	Value	Description
13	Type	-	The operation mode of the cyclic synchronous velocity mode is selected. The operation mode changed is updated immediately. For details, refer to "Operation mode of the cyclic synchronous velocity mode" on p.115.
		-	Operation allowed
12		Halt	0
			Stops operation. The stopping method is "Immediate stop."

For the bit7 and bit3 to bit0, refer to "State transition of the drive state machine" on p.99.

Operation mode of the cyclic synchronous velocity mode

The operation mode of the cyclic synchronous velocity mode is set with the "Type (6040h: bit13, bit12)." The operation modes are as shown in the table.

Bit13	Bit12	Operation mode	Explanation
0	0	Continuous operation (Position control)	Continuous operation is executed at the "Target velocity (60FFh)." Operation is executed while the position deviation is monitored, so when a load exceeding the torque of the motor is applied, an alarm of overload or excessive position deviation is generated. If sudden position deviation occurs, for example, when a large load is removed, the motor accelerates suddenly or has overspeed to remove deviation.
0	1	Continuous operation (Speed control)	Continuous operation is executed at the "Target velocity (60FFh)." When a load exceeding the torque of the motor is applied, an alarm of overload is generated.
1	0	Continuous operation (Push-motion) *	Continuous operation is executed at the "Target velocity (60FFh)." When a mechanism installed to the motor presses against a load, pressure is continuously applied to the load. In the cyclic synchronous velocity mode, it is the same movement as continuous operation (push-motion) and continuous operation (torque control).
1	1	Continuous operation (Torque control) *	

Note * When continuous operation (push-motion) or continuous operation (torque control) is performed, note the following.

- When a mechanism installed to the motor pressed against a load, push-motion operation is performed while a position deviation of 2.7° generates. An alarm of overload may be generated if the operation is stopped in this state, so perform operation to return the actual position by 3.6° beofore push-motion operation is stopped.
- Do not perform push-motion operation with geared motors and DGII Series. Doing so may cause damage to the motor or gear part.
- When push-motion operation is stopped in a state where a load is pressed, set the "Operating current (4120h)" of the next operation to be executed, to a value in the "Push current (4121h)" or less. If a higher current value than the "Push current (4121h)" is set, the push current may increase when an operation is transited, causing an unexpected push force to apply.

Statusword of the cyclic synchronous velocity mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific		Operation mode specific		Internal limit active	Reserved	Remote	ms
	-	Reserved	Target velocity ignored		Bit3	Bit2	Bit1
Bit7	Bit6	Bit5	Bit4	Bit0			
Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enabled	Switched on	Ready to switch on

Details of statusword

Bit	Name	Value	Description
15	TLC	0	A load does not reach the upper limit of the motor output torque.
13	Reserved	1	A load reached the upper limit of the motor output torque.
12	Target velocity ignored	0	Reserved

For the bit6 to bit0, refer to "Status output of the drive state machine" on p.100.
Operation in the cyclic synchronous velocity mode

3-6 Profile velocity mode (PV)

The profile velocity mode operates in the internal profile of the driver. A path generation (profile generation) is performed in the driver. The speed, acceleration and others are set in the EtherCAT master.

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6040h	00h	Controlword	U16	RW	RxPDO	-	0000h to FFFFh (Initial value: 0000h)	A
6041h	00h	Statusword	U16	RO	TxPDO	-	-	-
6060h	00h	Modes of operation	INT8	RW	RxPDO	\bigcirc	0 (Initial value), 1, 3, 6, 8, $9(\Rightarrow \text { p.101 })$	B
6061h	00h	Modes of operation display	INT8	RO	TxPDO	-	-	-
606Bh	00h	Velocity demand value [Hz]	INT32	RO	TxPDO	-	-	-
606Ch	00h	Velocity actual value [Hz]	INT32	RO	TxPDO	-	-	-
6083h	00h	Profile acceleration [step/s ${ }^{2}$]	U32	RW	RxPDO	\bigcirc	1 to 1,000,000,000 (Initial value: 300,000)	B
6084h	00h	Profile deceleration [step/s ${ }^{2}$]	U32	RW	RxPDO	\bigcirc	1 to 1,000,000,000 (Initial value: 300,000)	B
60FFh	00h	Target velocity [Hz]	INT32	RW	RxPDO	-	$\begin{array}{\|l\|} \hline-4,000,000 \text { to } 4,000,000 \\ \text { (Initial value: 0) } \end{array}$	B
4142h	00h	Starting speed [Hz]	INT32	RW	No	\bigcirc	0 to 4,000,000 (Initial value: 5,000)	B

Controlword of the profile velocity mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific (ms)					Reserved	oms	Halt
-	-	Type		-		-	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Fault reset	Operation mode specific (oms)			Enable operation	Quick stop	Enable voltage	Switch on
	-	-	-				

Details of controlword

Bit	Name	Value	Description		
13		-	The operation mode of the profile velocity mode is selected. The operation mode changed is updated immediately. For details, refer to "Operation mode of the profile velocity mode" on p.118		
12	Type	-	0		Operation allowed
:---					

For the bit7 and bit3 to bit0, refer to "State transition of the drive state machine" on p.99.

Operation mode of the profile velocity mode

The operation mode of the profile velocity mode is set with the "Type (6040h: bit13, bit12)." The operation modes are as shown in the table.

Bit13	Bit12	Operation mode	Explanation
0	0	Continuous operation (Position control)	The motor is started running at the "Starting speed (4142h)" and accelerates until the "Target velocity (60 FFh)" is reached. When the "Target velocity (60FFh)" is reached, operation is continued with the speed maintained. Operation is executed while the position deviation is monitored, so when a load exceeding the torque of the motor is applied, an alarm of overload or excessive position deviation is generated. If sudden position deviation occurs, for example, when a large load is removed, the motor accelerates suddenly or has overspeed to remove deviation.
0	1	Continuous operation (Speed control)	The motor is started running at the "Starting speed (4142h)" and accelerates until the "Target velocity (60FFh)" is reached. When the "Target velocity (60FFh)" is reached, operation is continued with the speed maintained. When a load exceeding the torque of the motor is applied, an alarm of overload is generated.
1	0	Continuous operation (Push-motion) *	The motor is started running at the "Starting speed (4142h)" and accelerates until the "Target velocity (60 FFh)" is reached. When the "Target velocity (60FFh)" is reached, operation is continued with the speed maintained. When a mechanism installed to the motor presses against a load, pressure is continuously applied to the load.
1	1	Continuous operation (Torque control) *	Rectangular operation (drive without acceleration/deceleration time) of the motor is executed at the "Target velocity (60FFh)," and operation is continued with the speed maintained. When a mechanism installed to the motor presses against a load, pressure is continuously applied to the load.

Note * When continuous operation (push-motion) or continuous operation (torque control) is performed, note the following.

- When a mechanism installed to the motor pressed against a load, push-motion operation is performed while a position deviation of 2.7° generates. An alarm of overload may be generated if the operation is stopped in this state, so perform operation to return the actual position by 3.6° beofore push-motion operation is stopped.
- Do not perform push-motion operation with geared motors and DGII Series. Doing so may cause damage to the motor or gear part.
- When push-motion operation is stopped in a state where a load is pressed, set the "Operating current (4120h)" of the next operation to be executed, to a value in the "Push current (4121h)" or less. If a higher current value than the "Push current (4121h)" is set, the push current may increase when an operation is transited, causing an unexpected push force to apply.

Statusword of the profile velocity mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific		Operation mode specific		Internal limit active	Target reached	Remote	ms
TLC	-	-	Speed				-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enabled	Switched on	Ready to switch on

Details of statusword

Bit	Name	Value	Description
15	TLC	0	A load does not reach the upper limit of the motor output torque.
		1	A load reached the upper limit of the motor output torque.
12	Speed	0	Internal speed command is other than 0 .
		1	Internal speed command is 0 .
11	Internal limit active	0	The function limitation by the internal limit is not in an active state.
		1	The function limitation by the internal limit became an active state. The value is 1 when any of the following internal limit function is activated. - Limit sensor (FW-LS/RV-LS) - Operation prohibition input (FW-BLK/RV-BLK) - Software limit - Mechanical limit
10	Target reached	0	- When the "Halt (6040h: bit8)" is 0:The internal feedback speed does not reach the "Target velocity (60FFh)." - When the "Halt (6040h: bit8)" is 1: During deceleration stop. (Internal speed command is other than 0 .)
		1	- When the "Halt (6040h: bit8)" is 0 : The internal feedback speed reached the "Target velocity (60 FFh)." When the Halt is 0 , the status of the VA output signal is output. The judgment level of the target speed reached can be set in the "VA mode selection (4718h)" and "VA detection speed range (4719h)." - When the "Halt (6040h: bit8)" is 1 : Internal speed command is 0.
9	Remote	1	The value becomes 1 when the initialization is complete.
7	Warning	0	Information not present When the causes of information are cleared, the "Warning" is automatically cleared to 0 .
		1	Information present.

For the bit6 to bit0, refer to "Status output of the drive state machine" on p.100.

Operation in the profile velocity mode

memo When the "Type (6040h: bit12, bit13)" is set to continuous operation (torque control), self-start operation (rectangular operation) at the "Target velocity (60FFh)" is performed.

3-7 Homing mode (HM)

The home is set in the homing mode. A path generation (profile generation) is performed in the driver. If return-to-home operation is performed, the position preset (P -PRESET) is executed when the operation is complete, and the home will be the value set in the "Home offset (607Ch)."

- Related object

Refer to "Selection of return-to-home method" on p.122.

Before starting operation; When the motorized actuator is used

For parameters of the $\mathbf{A Z}$ Series, the different values are stored in the ABZO sensor and driver. The values based on the product specifications are stored in the ABZO sensor. The values stored in the ABZO sensor cannot be changed because of the fixed value. Meantime, the values for the standard type (motor only) are stored in the driver parameters. In a state of the factory shipment, parameters (fixed value) stored in the ABZO sensor are used preferentially.
Since parameters stored in the driver are prioritized in the homing mode, change the setting according to the following steps.

1. Copy the ABZO information (fixed value) of the ABZO sensor to the driver. Refer to the AZ Series OPERATING MANUAL Function Edition.
2. Change the "JOG/HOME/ZHOME operation setting (47F5h)" to "1: Manual setting."
3. Change the "Homing method (6098h)" to "-1: Return-to-home of our specifications."
4. Execute the "Write batch NV memory (40C9h)."
5. Turn on the control power supply of the driver again. With these steps, the driver parameters will be prioritized.

Controlword of the homing mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific (ms)					Reserved	oms	Halt
-	-	-	-	-		-	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bito
Fault reset	Operation mode specific (oms)			Enable operation	Quick stop	Enable voltage	Switch on
	-	-	Homing operation start				

Details of controlword

Bit	Name	Value	Description
8	Halt	0	Operation allowed
4	1	Stops operation. The stopping method is in accordance with the setting Homing the "Halt option code (605Dh)."	
operation start	$0 \rightarrow 1$	Start of return-to-home operation If the "Homing operation start" is set to 0 during return-to-home operation, the motor decelerates to a stop. When the state is any of the followings, the command is not received, and an operation does not start. • During operation • "Halt (6040h: bit8)" has been 1. - The STOP input is ON. •The drive state machine is other than "Operation enabled." -The motor is in a non-excitation state.	

For the bit7 and bit3 to bit0, refer to "State transition of the drive state machine" on p. 99 .

Statusword of the homing mode

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Manufacturer specific	Operation mode specific		Internal TLC	-	Homing error	Homing attained	Target limit active
Bit7	Bit6	Bit5		Bit3	Bemote	Bit2	Bit1
Warning	Switch on disabled	Quick stop	Voltage enabled	Fault	Operation enabled	Switched on	Ready to switch on

- Details of statusword

Bit	Name	Value	Description
15	TLC	0	A load does not reach the upper limit of the motor output torque.
		1	A load reached the upper limit of the motor output torque.
13	Homing error	0/1	The status of the motor is output by combining the values in the "Homing error (6041 h : bit13)," "Homing attained (6041 h : bit 12)" and "Target reached (6041 h : bit 10)." For details, refer to table next.
12	Homing attained	0/1	The status of the motor is output by combining the values in the "Homing error (6041h: bit13)," "Homing attained (6041h: bit12)" and "Target reached (6041 h : bit 10)." For details, refer to table next.
		0	The function limitation by the internal limit is not in an active state.
11	Internal limit active	1	The function limitation by the internal limit became an active state. The value is 1 when any of the following internal limit function is activated. - Limit sensor (FW-LS/RV-LS) - Operation prohibition input (FW-BLK/RV-BLK) - Software limit - Mechanical limit
10	Target reached	0/1	The status of the motor is output by combining the values in the "Homing error (6041h: bit13)," "Homing attained (6041h: bit12)" and "Target reached (6041 h : bit 10)." For details, refer to table next.
9	Remote	1	The value becomes 1 when the initialization is complete.
7	Warning	0	Information not present When the causes of information are cleared, the "Warning" is automatically cleared to 0 .
		1	Information present.

For the bit6 to bit0, refer to "Status output of the drive state machine" on p.100.

- Status output of motor

The status of the motor is output by combining the values in the "Homing error (bit13)," "Homing attained (bit12)" and "Target reached (bit10)."

Homing error (Bit13)	Homing attained (Bit12)	Target reached (Bit10)	Status
0	0	0	During operation of return-to-home operation
0	0	1	Return-to-home operation is interrupted, or it is not started.
0	1	0	- (Not generated)
0	1	1	Return-to-home operation was properly complete.
1	0	0	- (Not generated)
1	0	1	Interrupted since an alarm was generated during return-to-home operation.
1	1	0	Reserved
1	1	1	Reserved

Selection of return-to-home method

The return-to-home method is selected in the "Homing method (6098h)." The driver supports the following return-tohome methods.

Homing method	Description
17	Return-to-home by the limit sensor (FW-LS/RV-LS), Starts in the negative direction
18	Return-to-home by the limit sensor (FW-LS/RV-LS), Starts in the positive direction
24	Return-to-home by the home sensor (HOMES), Starts in the positive direction
28	Return-to-home by the home sensor (HOMES), Starts in the negative direction
$35,37^{*}$	Home preset
-1	Return-to-home of our specifications

* 35 and 37 perform the same action.

- Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
607Ch	00h	Home offset [step]	INT32	RW	No	0	$\begin{array}{\|l} \hline-2,147,483,648 \text { to } \\ 2,147,483,647 \\ \text { (Initial value: 0) } \end{array}$	A
6098h	00h	Homing method	INT8	RW	No	\bigcirc	17, 18, 24 (Initial value), $28,35,37,-1(\Rightarrow$ "Selection of return-tohome method")	B
6099h	01h	Speed during search for switch $[\mathrm{Hz}]$	U32	RW	No	0	1 to 4,000,000 (Initial value: 10,000)	B
	02h	Speed during search for zero [Hz]	U32	RW	No	\bigcirc	1 to 10,000 (Initial value: 5,000)	B
609Ah	00h	Homing acceleration [step/ sec^{2}]	U32	RW	No	0	1 to 1,000,000,000 (Initial value: 300,000)	B
415Fh	00h	JOG/HOME/ZHOME operating current [1=0.1 \%]	INT16	RW	No	\bigcirc	0 to 1,000 (Initial value: 1,000)	B
4163h	00h	(HOME) Starting speed [Hz]	INT32	RW	No	\bigcirc	1 to 4,000,000 (Initial value: 5,000)	B
4169h	00h	(HOME) Backward steps in 2 sensor home-seeking [step]	INT32	RW	No	\bigcirc	0 to $8,388,607$ (Initial value: 5,000)	B
41C6h	00h	Preset position [step]	INT32	RW	No	\bigcirc	$\begin{aligned} & \hline-2,147,483,648 \text { to } \\ & 2,147,483,647 \\ & \text { (Initial value: 0) } \end{aligned}$	A

- Return-to-home operation of our specifications

Return-to-home mode of our specifications is applied when setting the "Homing method (6098h)" to -1 .
Related object (our specifications)

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
607Ch	00h	Home offset [step]	INT32	RW	No	\bigcirc	$\begin{aligned} & \hline-2,147,483,648 \text { to } \\ & 2,147,483,647 \\ & \text { (Initial value: } 0 \text {) } \end{aligned}$	A
6099h	01h	Speed during search for switch [Hz]	U32	RW	No	\bigcirc	1 to 4,000,000 (Initial value: 10,000)	B
	02h	Speed during search for zero [Hz]	U32	RW	No	0	1 to 10,000 (Initial value: 5,000)	B
609Ah	00h	Homing acceleration [step/sec ${ }^{2}$]	U32	RW	No	\bigcirc	1 to 1,000,000,000 (Initial value: 300,000)	B
415Fh	00h	JOG/HOME/ZHOME operating current [1=0.1 \%]	INT16	RW	No	0	0 to 1,000 (Initial value: 1,000)	B
4160h	00h	(HOME) Home-seeking mode	U8	RW	No	\bigcirc	0: 2-sensor 1:3-sensor (Initial value) 2: One-way rotation 3: Push-motion	B
4161h	00h	(HOME) Starting direction	U8	RW	No	\bigcirc	0 : Negative side 1: Positive side (Initial value)	B
4163h	00h	(HOME) Starting speed [Hz]	INT32	RW	No	\bigcirc	1 to $4,000,000$ (Initial value: 5,000)	B
4166h	00h	(HOME) SLIT detection	U8	RW	No	\bigcirc	0 : Disable (Initial value) 1: Enable	B
4167h	00h	(HOME) TIM/ZSG signal detection	U8	RW	No	\bigcirc	$\begin{aligned} & \text { 0: Disable (Initial value) } \\ & \text { 1:TIM } \\ & \text { 2: ZSG } \end{aligned}$	B
4168h	00h	(HOME) Position offset [Hz]	INT32	RW	No	0	$\begin{aligned} & -2,147,483,647 \text { to } \\ & 2,147,483,647 \\ & \text { (Initial value: 0) } \end{aligned}$	B
4169h	00h	(HOME) Backward steps in 2 sensor home-seeking [step]	INT32	RW	No	0	0 to $8,388,607$ (Initial value: 5,000)	B
416Ah	00h	(HOME) Operating amount in uni-directional home-seeking [step]	INT32	RW	No	0	0 to $8,388,607$ (Initial value: 5,000)	B
416Bh	00h	(HOME) Operating current for push-home-seeking [1=0.1 \%]	INT16	RW	No	\bigcirc	0 to 1,000 (Initial value: 1,000)	B
416Ch	00h	(HOME) Backward steps after first entry in push-homeseeking [step]	INT32	RW	No	0	0 to $8,388,607$ (Initial value: 0)	B
416Dh	00h	(HOME) Pushing time in push-home-seeking [ms]	U16	RW	No	\bigcirc	0 to 65,535 (Initial value: 200)	B
416Eh	00h	HOME) Backward steps in push-home-seeking [step]	INT32	RW	No	\bigcirc	0 to 8,388,607 (Initial value: 5,000)	B
41C6h	00h	Preset position [step]	INT32	RW	No	\bigcirc	$\begin{array}{\|l\|} \hline-2,147,483,648 \text { to } \\ 2,147,483,647 \\ \text { (Initial value: } 0 \text {) } \\ \hline \end{array}$	A

Operation of return-to-home mode of CiA402 drive profile

How to read the figure

- Homing method: 24 [Return-to-home by the home sensor (HOMES), starts in the positive direction]

When the HOME sensor is detected, the motor rotates in the reverse direction and pulls out of the HOME sensor at the "(HOME) Starting speed (4163h)." After pulling out of the HOME sensor, the motor reverses once again, and continue to operate at the "Speed during search for zero ($6099 \mathrm{~h}-02 \mathrm{~h}$)." The motor stops when the ON edge of the HOME sensor is detected, and the position at which the motor stopped becomes the home.

In the case of return-to-home operation of our specifications, the same operation is performed if the following data is set.

- (HOME) Home-seeking mode (4160h): 1 [3-sensor]
- (HOME) Starting direction (4161h): 1 [positive side]
- (HOME) SLIT detection (4166h): 0 [disable]
- (HOME) TIM/ZSG signal detection (4167h): 0 [disable]
- Homing method: 28 [Return-to-home by the home sensor (HOMES), starts in the negative direction]

When the HOME sensor is detected, the motor rotates in the reverse direction and pulls out of the HOME sensor at the "(HOME) Starting speed (4163h)." After pulling out of the HOME sensor, the motor reverses once again, and continue to operate at the "Speed during search for zero ($6099 \mathrm{~h}-02 \mathrm{~h}$)." The motor stops when the ON edge of the HOME sensor is detected, and the position at which the motor stopped becomes the home.

In the case of return-to-home operation of our specifications, the same operation is performed if the following data is set.

- (HOME) Home-seeking mode (4160h): 1 [3-sensor]
- (HOME) Starting direction (4161h): 0 [negative side]
- (HOME) SLIT detection (4166h): 0 [disable]
- (HOME) TIM/ZSG signal detection (4167h): 0 [disable]
- Homing method: 17 [Return-to-home by the limit sensor (FW-LS/RV-LS), starts in the negative direction]

After pulling out of the limit sensor, the motor rotates to stop according to the value set in the "(HOME) Backward steps in 2 sensor home-seeking (4169 h)." The stop position will be the home.

In the case of return-to-home operation of our specifications, the same operation is performed if the following data is set.

- (HOME) Home-seeking mode (4160h): 0 [2-sensor]
- (HOME) Starting direction (4161h): 0 [negative side]
- (HOME) SLIT detection (4166h): 0 [disable]
- (HOME) TIM/ZSG signal detection (4167h): 0 [disable]
- Homing method: 18 [Return-to-home by the limit sensor (FW-LS/RV-LS), starts in the positive direction]
After pulling out of the limit sensor, the motor rotates to stop according to the value set in the "(HOME) Backward steps in 2 sensor home-seeking (4169h)." The stop position will be the home.

In the case of return-to-home operation of our specifications, the same operation is performed if the following data is set.

- (HOME) Home-seeking mode (4160h): 0 [2-sensor]
- (HOME) Starting direction (4161h): 1 [positive side]
- (HOME) SLIT detection (4166h): 0 [disable]
- (HOME) TIM/ZSG signal detection (4167h): 0 [disable]
- Homing method: 35, Homing method: 37 (home preset)

The present position will be the home. The home preset can be executed except when the drive state machine is in a state of "Operation enabled." It can also be executed even when the motor is in a non-excitation state.

Operation of the return-to-home mode of our specifications

- Return-to-home operation sequence of the 3-sensor mode

The motor operates at the "Speed during search for switch (6099h-01h)." When the limit sensor is detected during operation, the motor rotates in the reverse direction and pulls out of the limit sensor. When the ON edge of the HOME sensor is detected, operation is stopped. The position at which the motor stopped becomes the home.

	\bullet VR: Speed during search for switch (6099h-01h)
Explanation	\bullet VS: (HOME) Starting speed (4163h)
of labels	\bullet VL: Speed during search for zero (6099h-02h)
	$\bullet--$-: Orbit when a home offset is set

Starting position of return-to-home operation	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
RV-LS		
FW-LS		
HOMES		
Between HOMES and RV-LS		
Between HOMES and FW-LS		

When the SLIT input, TIM signal, and ZSG signal are used concurrently

Even after return-to-home operation is complete, operation is continued until an external signal is detected.
The return-to-home operation will be completed when the external signal is detected while the HOME sensor is being ON.

Explanation of labels	- VR: Speed during search for switch (6099h-0
	- VS: (HOME) Starting speed (4163h)
	- VL: Speed during search for zero (6099h-02h)
	- -- -: Orbit when a home offset is set

Home detection signal	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
SLIT input		
TIM signal or ZSG signal		
SLIT input and TIM signal or SLIT input and ZSG signal		

- Return-to-home operation sequence of the 2-sensor mode

The motor is operated in the "(HOME) Starting speed (4163h)." When the limit sensor is detected, the motor rotates in the reverse direction and pulls out of the limit sensor. After pulling out, the motor is operated according to the value of the "(HOME) Backward steps in 2 sensor home-seeking (4169h)" and stops. The position at which the motor stopped becomes the home.

Explanation of labels	- VR: Speed during search for switch (6099h-01h)
	- VS: (HOME) Starting speed (4163h)
	- VL: Speed during search for zero (6099h-02h)
	- -- -: Orbit when a home offset is set

Starting position of return-to-home operation	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
RV-LS		
FW-LS		
Between RV-LS and FW-LS		

* After pulling out of the limit sensor, the motor rotates to stop according to the value set in the "(HOME) Backward steps in 2 sensor home-seeking (4169h)."

When the SLIT input, TIM signal, and ZSG signal are used concurrently
Even after return-to-home operation is complete, operation is continued until an external signal is detected. If an external signal is detected, return-to-home operation is complete.

	\bullet VR: Speed during search for switch (6099h-01h)
Explanation of labels	\bullet VS: (HOME) Starting speed (4163h)
	\bullet VL: Speed during search for zero (6099h-02h)
	$\bullet--$:- Orbit when a home offset is set

Home detection signal	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
SLIT input		
TIM signal or ZSG signal		
SLIT input and TIM signal or SLIT input and ZSG signal		

[^9]
- One-way rotation mode

The motor is operated in the "Speed during search for switch (6099h-01h)." When the HOME sensor is detected, the motor decelerates to a stop and pulls out of the range of the HOME sensor at the "Speed during search for zero (6099h-02h)."
After pulling out, motor operates according to the value of "(HOME) Operating amount in uni-directional homeseeking (416Ah)," and stops. The position at which the motor stopped becomes the home.

Explanation of labels	- VR: Speed during search for switch (6099h-01h)
	- VS: (HOME) Starting speed (4163h)
	- VL: Speed during search for zero (6099h-02h)
	----: Orbit when a home offset is set

Starting position of return-to-home operation	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
HOMES	HOMES	HOMES
Other than HOMES	HOMES	HOMES

* After pulling out of the HOME sensor, the motor rotates to stop according to the value set in the "(HOME) Operating amount in uni-directional home-seeking (416Ah)."
memo When the motor pulls out of the HOME sensor during deceleration stop after detection of the HOME sensor, an alarm of return-to-home error (alarm code 62h) is generated. Set the "Homing acceleration (609Ah)" so that the motor can stop in the range of the HOME sensor.

When the SLIT input, TIM signal, and ZSG signal are used concurrently
Even after return-to-home operation is complete, operation is continued until an external signal is detected. If an external signal is detected, return-to-home operation is complete.

	\bullet VR: Speed during search for switch (6099h-01h)
Explanation of labels	\bullet VS: (HOME) Starting speed (4163h)
	\bullet VL: Speed during search for zero (6099h-02h)
	$\bullet--$-: Orbit when a home offset is set

| Home detection signal | Starting direction of return-to-home
 operation: Positive side | Starting direction of return-to-home
 operation: Negative side |
| :---: | :---: | :---: | :---: | :---: |

[^10]
- Push-motion mode

The motor is operated in the "Speed during search for switch (6099h-01h)." When the motor presses the stopper or others installed in the mechanical end, it rotates in the reverse direction and stops after moving the value set in the "(HOME) Backward steps after first entry in push-home-seeking (416Ch)." Once again, the motor starts the operation toward the stopper, and it rotates in the reverse direction when pressing the stopper, and stops after moving the value set in the "(HOME) Backward steps in push-home-seeking (416Eh)."

Note Do not perform push-motion operation with geared motors and DGII Series. Doing so may cause damage to the motor or gear part.

	\bullet •VR: Speed during search for switch (6099h-01h)
Explanation of labels	•VS: (HOME) Starting speed (4163h)
	\bullet VL: Speed during search for zero (6099h-02h)
	$\bullet--:$ Orbit when a home offset is set

Starting position of return-to-home operation	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
Between mechanical ends		

*1 The motor moves from the mechanical end according to the value set in the "(HOME) Backward steps after first entry in push-home-seeking (416Ch)" and stop.
*2 The motor moves from the mechanical end according to the value set in the "(HOME) Backward steps in push-home-seeking (416Eh)" and stop.

When the SLIT input, TIM signal, and ZSG signal are used concurrently
Even after return-to-home operation is complete, operation is continued until an external signal is detected. If an external signal is detected, return-to-home operation is complete.

Explanation of labels	\bullet •VR: Speed during search for switch (6099h-01h)
	\bullet VL: Speed during search for zero (6099h-02h)
	$\bullet--$-: Orbit when a home offset is set

| Home detection signal | Starting direction of return-to-home
 operation: Positive side | Starting direction of return-to-home
 operation: Negative side |
| :---: | :---: | :---: | :---: | :---: |

[^11]
4 Function

4-1 Touch probe

The touch probe is a function to set the external latch input signal (EXT1 input, EXT2input) or output signal (ZSG output, TIM output) as a trigger, and to latch the position for when the trigger is input. For the position to latch, either of the internal command position or feedback position can be selected.
The touch probe has the touch probe 1 and touch probe 2.

- Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60B8h	00h	Touch probe function	U16	RW	RxPDO	-	0000h to FFFFh (Initial value: 0000h)	A
60B9h	00h	Touch probe status	U16	RO	TxPDO	-	-	-
60BAh	00h	Touch probe position 1 positive value [step]	INT32	RO	TxPDO	-	-	-
60BBh	00h	Touch probe position 1 negative value [step]	INT32	RO	TxPDO	-	-	-
60BCh	00h	Touch probe position 2 positive value [step]	INT32	RO	TxPDO	-	-	-
60BDh	00h	Touch probe position 2 negative value [step]	INT32	RO	TxPDO	-	-	-
44B0h	00h	Touch probe 1 latch position	U8	RW	No	-	0: Latches the feedback position (Initial value) 1: Latches the command position	A
44B1h	00h	Touch probe 2 latch position	U8	RW	No	-	0 : Latches the feedback position (Initial value) 1: Latches the command position	A
44B2h	00h	Touch probe 1 TIM/ZSG signal select	U8	RW	No	-	0: Latch on the ZSG output (Initial value) 1: Latch on the TIM output	A
44B3h	00h	Touch probe 2 TIM/ZSG signal select	U8	RW	No	-	0 : Latch on the ZSG output (Initial value) 1: Latch on the TIM output	A

- Related signal

Signal name	Description
EXT1 input	This is an external latch input signal for the touch probe 1.
EXT2 input	This is an external latch input signal for the touch probe 2.
ZSG output	This signal can be used in the touch probe 1 and touch probe 2.
TIM output	This signal is output once per 7.2° rotation of the motor output shaft. It can be used in the touch probe 1 and touch probe 2.

- Details of touch probe function

The action of the touch probe is set in the "Touch probe function (60B8h)"
The action of the touch probe 1 is set in the lower 8 bits, and that of the touch probe 2 is set in the upper 8 bits. Set the trigger condition using the Touch probe 1 trigger action/Touch probe 2 trigger action (Bit1/Bit9) and the Touch probe 1 trigger selection/Touch probe 2 trigger selection (Bit2/Bit10). After that, changing the Touch probe 1 permission/Touch probe 2 permission (Bit0/Bit8) from 0 to 1 latches according to the set trigger condition.
Be sure to change the Touch probe 1 permission/Touch probe 2 permission (Bit0/Bit8) back to 0 before changing the trigger condition. Changing the trigger condition while the Touch probe 1 permission/Touch probe 2 permission (Bit0/Bit8) remains 1 will not be enabled.

Bit	Name	Value	Definition
0	Touch probe 1 permission	0	Disables touch probe 1.
		1	Enables touch probe 1.
1	Touch probe 1 trigger action	0	First trigger action Latches only once on the first trigger.
		1	Continuous operation Latches every time a trigger is input.
2	Touch probe 1 trigger selection	0	Sets the external latch input EXT1 as a trigger.
		1	Sets the ZSG output or TIM output as a trigger.
3	Reserved	0	Reserved
4	Touch probe 1 positive value action	0	Disables the latch function at the positive value of a trigger.
		1	Enables the latch function at the positive value of a trigger.
5	Touch probe 1 negative value action	0	Disables the latch function at the negative value of a trigger.
		1	Enables the latch function at the negative value of a trigger.
6	Reserved	0	Reserved
7	Reserved	0	Reserved
8	Touch probe 2 permission	0	Disables touch probe 2.
		1	Enables touch probe 2.
9	Touch probe 2 trigger action	0	First trigger action Latches only once on the first trigger.
		1	Continuous operation Latches every time a trigger is input.
10	Touch probe 2 trigger selection	0	Sets the external latch input EXT2 as a trigger.
		1	Sets the ZSG output or TIM output as a trigger.
11	Reserved	0	Reserved
12	Touch probe 2 positive value action	0	Disables the latch function at the positive value of a trigger.
		1	Enables the latch function at the positive value of a trigger.
13	Touch probe 2 negative value action	0	Disables the latch function at the negative value of a trigger.
		1	Enables the latch function at the negative value of a trigger.
14	Reserved	0	Reserved
15	Reserved	0	Reserved

Details of touch probe status

The status of the touch probe is output by the "Touch probe status (60B9h)."
The status of the touch probe 1 is output by the lower 8 bits, and that of the touch probe 2 is output by the upper 8 bits.

Bit	Name	Value	Definition
0	Touch probe 1 permission status	0	Touch probe 1 is disabled.
		1	Touch probe 1 is enabled.
1	Touch probe 1 positive value latch	0	Has not latch on the positive value of the touch probe 1.
		1	Latched on the positive value of the touch probe 1.
2	Touch probe 1 negative value latch	0	Has not latch on the negative value of the touch probe 1.
		1	Latched on the negative value of the touch probe 1.
3 to 7	Reserved	0	Reserved
8	Touch probe 2 permission status	0	Touch probe 2 is disabled.
		1	Touch probe 2 is enabled.
9	Touch probe 2 positive value latch	0	Has not latch on the positive value of the touch probe 2.
		1	Latched on the positive value of the touch probe 2.
10	Touch probe 2 negative value latch	0	Has not latch on the negative value of the touch probe 2.
		1	Latched on the negative value of the touch probe 2.
11 to 15	Reserved	0	Reserved

Trigger and latch position

A signal that is set as a trigger is selected by the "Trigger selection (bit2/bit10)" of the "Touch probe function (60B8h)." The ZSG output and TIM output can be selected by the "Touch probe TIM/ZSG signal select (44B2h/44B3h)." The latch position varies depending on the signal that was set as the trigger. When the external latch input (EXT1 input, EXT2 input) is set as the trigger, the latch position can be set to ether of the feedback position (actual position) or internal command position.

Signal name	Latch position
External latch input	Feedback position (actual position) or internal command position. Select by the "Touch probe latch position (44BOh/44B1h)"
ZSG output	Feedback position
TIM output	Internal command position

Related object

Index	Sub	Object name	Initial value	Description
44B0h	00 h	Touch probe 1 latch position	0	0
0: Latches the feedback position				
44B1h	00 h	Touch probe 2 latch position	0	Latches the command position
44B2h	00 h	Touch probe 1 TIM/ZSG signal select	0	0 0: Latch on the ZSG output
44B3h	00 h	Touch probe 2 TIM/ZSG signal select	0	1: Latch on the TIM output

Operation sequence of the touch probe

The operation examples of touch probe 1 are shown below.

- If the trigger action is "First trigger action (60B8h: bit1 is 0)"

- If the trigger action is "Continuous operation (60B8h: bit1 is 1)"

When the "Gear ratio (6091h)" is set, the resolution per one rotation of the motor output shaft can be set.

- Resolution of the motor output shaft $=10,000 \times$ "Electronic gear $B(6091 \mathrm{~h}-02 \mathrm{~h})$ "/"Electronic gear A (6091h-01h)"
- Factory setting: 10,000 P/R
- Setting range: 100 to 10,000 P/R

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6091 h	$00 h$	Number of entries	U8	RO	No	-	2	-
	$01 h$	Electronic gear A	U32	RW	No	O	1 to 65,535 (Initial value: 1)	C
	$02 h$	Electronic gear B	U32	RW	No	O	1 to 65,535 (Initial value: 1)	C

memo - If the value out of the setting range is set, the information of electronic gear setting error is generated (information code 2000h). If the control power supply is turned on again or configuation is executed while the information of electronic gear setting error is present, an alarm of electronic gear setting error is generated (alarm code 71h).

- If the resolution was changed after executing preset with the "Home offset (607 Ch)" other than "0," execute preset again. When the "Home offset (607 Ch)" is "0," it is no need to execute preset again even if the resolution is changed. (The present position is calculated automatically.)
- When the TIM output is used in return-to-home operation or others, set the resolution to be an integral multiple of 50 .

4-3 Wrap function

The wrap function is a function to automatically preset the position information of the current position when the number of revolutions of the motor output shaft exceeds the set range. Setting of wrap offset allows you to limit the operation area of the equipment and control the index table with coordinates on the positive and negative sides.

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
41C7h	00h	Wrap setting	U8	RW	No	0	0: Disable 1: Enable (Initial value)	C
41C9h	00h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	INT32	RW	No	\bigcirc	5 to 655,360 (Initial value: 10)	C
41CBh	00h	Initial coordinate generation \& wrap range offset ratio [1=0.01 \%]	U16	RW	No	\bigcirc	0 to 10,000 (Initial value: 5,000)	C
41CCh	00h	Initial coordinate generation \& wrap range offset value [step]	INT32	RW	No	O	$\begin{array}{\|l} \hline-536,870,912 \text { to } \\ 536,870,911 \\ \text { (Initial value: } 0 \text {) } \\ \hline \end{array}$	C

4-4 Operating current and stop current

base current rate (\%) for the operating current and stop current by the "Base current (4126h)."

- Operating current $=$ Maximum output current \times "Base current (4126h)" \times "Operating current (4120h)"
- Stop current = Maximum output current \times "Base current (4126h)" \times "Stop current (4128h)"
- Push current = Maximum output current \times "Base current (4126h)" \times "Push current (4121h)"
memo If the base current is set, the maximum output current of the driver can be changed. If the load is small and there is an ample allowance for torque, the motor temperature rise can be suppressed by setting a lower base current. However, excessively low base current may cause a problem in starting the motor or holding the load in position. Do not reduce the base current any more than is necessary.

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
4120h	00h	Operating current [1=0.1 \%]	INT16	RW	RxPDO	0	0 to 1,000 (Initial value: 1,000)	A*
4121h	00h	Push current [1=0.1 \%]	INT16	RW	RxPDO	\bigcirc	0 to 1,000 (Initial value: 200)	A *
4126h	00h	Base current [1=0.1 \%]	INT16	RW	RxPDO	0	0 to 1,000 (Initial value: 1,000)	A
4128h	00h	Stop current [1=0.1 \%]	INT16	RW	RxPDO	\bigcirc	0 to 1,000 (Initial value: 500)	A
415Fh	00h	JOG/HOME/ZHOME operating current [1=0.1 \%]	INT16	RW	No	0	0 to 1,000 (Initial value: 1,000)	B
416Bh	00h	(HOME) Operating current for push-home-seeking [1=0.1 \%]	INT16	RW	No	\bigcirc	0 to 1,000 (Initial value: 1,000)	B

* With the profile position mode, it will be update at start of operation.

4-5 Maintenance commands

Resetting an alarm, the position preset (P-PRESET), batch processing for the non-volatile memory, and others are performed.
memo The maintenance commands include processing in which the memory is operated, such as nonvolatile memory batch processing and position preset (P-PRESET). Be careful not to execute them unnecessarily in succession.

Related object

Index	Sub	Name	Description
40C0h	00h	Alarm reset	Resets the alarm that is present. Some alarms cannot be reset.
40C2h	00h	Clear alarm history	Clears alarm history.
40C5h	00h	P-PRESET execution	Presets the command position.
40C6h	00h	Configuration	Executes the parameter recalculation and the setup.
40C8h	00h	Read batch NV memory	Reads the parameters saved in the non-volatile memory to the RAM. All parameters saved in the RAM are overwritten.
40C9h	00h	Write batch NV memory	Writes the parameters saved in the RAM to the non-volatile memory. The non-volatile memory can be rewritten approximately 100,000 times.
40CAh	00h	All data initialization	Resets the parameters saved in the non-volatile memory to their initial values.
40CBh	00h	Read from backup	Reads all the data from the backup area.
40CCh	00h	Write to backup	Writes all the data to the backup area.
40CDh	00h	Clear latch information	Clears the cumulative load. This is used when the "Cumulative load value auto clear (41B3h)" is set to "0: Disable."
40CFh	00h	Clear tripmeter	Clears the tripmeter.
40D0h	00h	Execute ETO-CLR input	Puts the motor, which is after the power removal function is released, into a state possible to excite.
40D1h	00h	ZSG-PRESET	Resets the position of the Z-phase.
40D2h	00h	Clear ZSG-PRESET	Clears the position data of the Z-phase reset by the "ZSGPRESET (40D1h)" command.
40D3h	00h	Clear information	Clears information.
40D4h	00h	Clear information history	Clears information history.

How to execute maintenance commands

The following two methods are available to execute maintenance commands. Use them selectively in accordance with the intended use.

- Writing 1 to data (recommended)

When data is changed from 0 to 1 after 1 is written to it, the command is executed.
To execute the same command again, restore the data to 0 and then write 1 . It is safe, because the command is not executed in succession even if 1 is written from the EtherCAT master continuously.

- Writing 2 to data

When 2 is written to data, the command is executed. After execution, the data is restored to 1 automatically. Data does not need to restore to 1 , and it can be written consecutively.
If commands which take time to write to the non-volatile memory such as "Write batch NV memory (40C9h)" are executed consecutively, increase the length of the intervals between commands.

Configuration

Configuration can be executed when all of the following conditions are satisfied:

- An alarm is not present.
- The motor is not operating.
- I/O test, remote operation and downloading are not executed with the MEXE02.

The following table shows the driver status before and after executing the configuration.

Item	Configuration is ready to execute	Configuration is being executed	After execution of configuration
PWR/ALM LED	Green lit	Green and red blink twice simultaneously *	Hepends on the driver condition.
Electromagnetic brake	Hold/release	Hold	
Motor excitation	Excitation/non-excitation	Non-excitation	Enable
Output signal	Enable	Disable	Enable
Input signal	Enable	Disable	Ennnn

* Green and red colors may overlap and it may be visible to orange.
memo The correct monitor value may not be returned even if monitoring is executed during configuration.

4-6 Assignment of I/O function

This section explains the assignment of I/O functions and internal I/O status.

Assignment to input terminals

Input signals can be assigned to the input terminals IN0 to IN5. For input signals that can be assigned, refer to p. 146 .
Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
4840h	00h	DINO input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 30 (HOMES)]	C
4841h	00h	DIN1 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 1 (FREE)]	C
4842h	00h	DIN2 input function	U8	RW	No	0	0 to 127 [Initial value: 12 (ETO-CLR)]	C
4843h	00h	DIN3 input function	U8	RW	No	0	0 to 127 [Initial value: 104 (EXT1)]	C
4844h	00h	DIN4 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 28 (FW-LS)]	C
4845h	00h	DIN5 input function	U8	RW	No	0	0 to 127 [Initial value: 29 (RV-LS)]	C

- Assignment to the output terminals

Output signals can be assigned to the output terminals OUT0 to OUT5. For output signals that can be assigned, refer to p. 147 .

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
4860h	00h	DOUTO (Normal) output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 144 (HOME-END)]	C
4861h	00h	DOUT1 (Normal) output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 137 (ETO-MON)]	C
4862h	00h	DOUT2 (Normal) output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 133 (PLS-RDY)]	C
4863h	00h	DOUT3 (Normal) output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 142 (CRNT)]	C
4864h	00h	DOUT4 (Normal) output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 134 (MOVE)]	C
4865h	00h	DOUT5 (Normal) output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 130 (ALM-B)]	C

Direct I/O

The status of the direct I/O can be checked using the "Direct I/O (406Ah)." Bit arrangements are as follows.

Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
BSG	ASG	-	-	-	-	-	-
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
-	-	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
VR-IN3	VR-IN2	VR-IN1	VR-IN0	-	EXT-IN	-	-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	IN5	IN4	IN3	IN2	IN1	IN0

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
406Ah	00h	Direct I/O	U32	RO	TxPDO	-	-	-

- I/O status

The status of the I/O inside the driver can be monitored using the I/O status. Bit arrangements of the internal I/O are as follows.

Driver object	Description							
$\begin{gathered} \text { I/O status } 6 \\ \text { (40BDh) } \end{gathered}$	Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
	-	-	-	-	-	-	-	-
	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
	-	-	USR-OUT1	USR-OUTO	-	-	-	-
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	-	-	HWTOINMON	EDM-MON	-	RG	MBC	MPS
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	AREA7	AREA6	AREA5	AREA4	AREA3	AREA2	AREA1	AREAO
$\begin{gathered} \text { I/O status } 7 \\ \text { (40BEh) } \end{gathered}$	Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
	-	-	-	-	-	-	-	-
	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
	-	-	-	-	-	-	-	-
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	-	-	$\begin{gathered} \text { DCMD- } \\ \text { FULL } \end{gathered}$	DCMD-RDY	PLS-LOST	-	-	-
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	-	-	-	OPE-BSY	-	-	SPD-LMTD	CRNT-LMTD
I/O status 8 (40BFh)	Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
	INFO-RBT	INFO-CFG	INFOIOTEST	INFODSLMTD	-	-	-	-
	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
	-	-	INFO-ODO	INFO-TRIP	INFOCULD1	INFOCULD0	INFO-RV-OT	INFO-FWOT
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	-	$\begin{aligned} & \text { INFO- } \\ & \text { RND-E } \end{aligned}$	INFO-EGR-E	-	$\begin{aligned} & \text { INFO-PR- } \\ & \text { REQ } \end{aligned}$	INFO ZHOME	INFO-START	INFO-SPD
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	-	INFOOLTIME	INFOUVOLT	INFOOVOLT	INFOMTRTMP	INFODRVTMP	$\begin{aligned} & \text { INFO- } \\ & \text { POSERR } \end{aligned}$	INFO-USRIO

Related object

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
40B8h	00h	I/O status 1	U32	RO	TxPDO	-	-	-
40B9h	00h	I/O status 2	U32	RO	TxPDO	-	-	-
40BAh	00h	I/O status 3	U32	RO	TxPDO	-	-	-
40BBh	00h	I/O status 4	U32	RO	TxPDO	-	-	-
40BCh	00h	I/O status 5	U32	RO	TxPDO	-	-	-
40BDh	00h	I/O status 6	U32	RO	TxPDO	-	-	-
40BEh	00h	I/O status 7	U32	RO	TxPDO	-	-	-
40BFh	00h	I/O status 8	U32	RO	TxPDO	-	-	-

Driver input command

The "Driver input command (403Eh)" is an input command from the EtherCAT master to the driver. Bit arrangements are as follows.
Bit0 to bit15 are assigned to the R-IN0 to R-IN15.
(): Initial value

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
R-IN15 (not used)	R-IN14 (not used)	R-IN13 (not used)	R-IN12 (not used)	R-IN11 (not used)	R-IN10 (not used)	R-IN9 (not used)	R-IN8 (not used)
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
R-IN7 (not used)	R-IN6 (not used)	R-IN5 (not used)	R-IN4 (not used)	R-IN3 (not used)	R-IN2 (not used)	R-IN1 (not used)	R-IN0 (not used)

Related object
For input signals that can be assigned, refer to p.146.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
4900h	00h	R-INO input function	U8	RW	No	0	0 to 127 [Initial value: 0 (not used)]	C
4901h	00h	R-IN1 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
4902h	00h	R-IN2 input function	U8	RW	No	0	0 to 127 [Initial value: 0 (not used)]	C
4903h	00h	R-IN3 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
4904h	00h	R-IN4 input function	U8	RW	No	0	0 to 127 [Initial value: 0 (not used)]	C
4905h	00h	R-IN5 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
4906h	00h	R-IN6 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
4907h	00h	R-IN7 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
4908h	00h	R-IN8 input function	U8	RW	No	0	0 to 127 [Initial value: 0 (not used)]	C
4909h	00h	R-IN9 input function	U8	RW	No	0	0 to 127 [Initial value: 0 (not used)]	C
490Ah	00h	R-IN10 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
490Bh	00h	R-IN11 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
490Ch	00h	R-IN12 input function	U8	RW	No	0	0 to 127 [Initial value: 0 (not used)]	C
490Dh	00h	R-IN13 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
490Eh	00h	R-IN14 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C
490Fh	00h	R-IN15 input function	U8	RW	No	\bigcirc	0 to 127 [Initial value: 0 (not used)]	C

Driver status

The status of the R-OUT0 to R-OUT15 can be checked using the "Driver output status (403Fh)." Bit arrangements are as follows.
(): Initial value

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
R-OUT15 (TLC)	R-OUT14 (IN-POS)	R-OUT13 (MOVE)	R-OUT12 (TIM)	R-OUT11 (AREA2)	R-OUT10 (AREA1)	R-OUT9 (AREA0)	R-OUT8 (SYS-BSY)
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
R-OUT7 (ALM-A)	R-OUT6 (INFO)	R-OUT5 (DCMD-RDY)	R-OUT4 (HOME-END)	R-OUT3 (not used)	R-OUT2 (ZSG)	R-OUT1 (RV-LS_R)	R-OUT0 (FW-LS_R)

Related object

For output signals that can be assigned, refer to p.147.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
4910h	00h	R-OUTO output function	U8	RW	No	0	0 to 255 [Initial value: 28 (FW-LS_R)]	C
4911h	00h	R-OUT1 output function	U8	RW	No	0	0 to 255 [Initial value: 29 (RV-LS_R)]	C
4912h	00h	R-OUT2 output function	U8	RW	No	0	0 to 255 [Initial value: 155 (ZSG)]	C
4913h	00h	R-OUT3 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 0 (not used)]	C
4914h	00h	R-OUT4 output function	U8	RW	No	0	0 to 255 [Initial value: 144 (HOME-END)]	C
4915h	00h	R-OUT5 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 204 (DCMD-RDY)]	C
4916h	00h	R-OUT6 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 135 (INFO)]	C
4917h	00h	R-OUT7 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 129 (ALM-A)]	C
4918h	00h	R-OUT8 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 136 (SYS-BSY)]	C
4919h	00h	R-OUT9 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 160 (AREAO)]	C
491Ah	00h	R-OUT10 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 161 (AREA1)]	C
491Bh	00h	R-OUT11 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 162 (AREA2)]	C
491Ch	00h	R-OUT12 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 157 (TIM)]	C
491Dh	00h	R-OUT13 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 134 (MOVE)]	C
491Eh	00h	R-OUT14 output function	U8	RW	No	0	0 to 255 [Initial value: 138 (IN-POS)]	C
491Fh	00h	R-OUT15 output function	U8	RW	No	\bigcirc	0 to 255 [Initial value: 140 (TLC)]	C

Input signal list
To assign signals via EtherCAT communication, use the "Assignment No." in the table instead of the signal names.

Assignment No.	Signal name	Function	Status
0	Not used	Set when the input terminal is not used.	-
1	FREE	Cut off the current of the motor not to excite it. When an electromagnetic brake motor is used, the electromagnetic brake is in a state of releasing.	0: No motion 1: Electromagnetic brake is in a state of releasing + motor nonexcitation
3	CLR	Clear the deviation (position deviation) between the command position and actual position to zero.	0 : No motion 1: Clear deviation
5	STOP	Stop the motor.	0: No motion 1: Stop operation
8	ALM-RST	Release the alarm that is present.	0 : No motion 1: Reset alarm
9	P-PRESET	Rewrite the mechanical home to the current position.	0: No motion 1: Execute preset
12	ETO-CLR	Puts the motor, which is after the power removal function is released, into a state possible to excite.	0: No motion 1: Transition to a state of allowing motor excitation
13	LAT-CLR	Clear the cumulative load. This is used when the "Cumulative load value auto clear (41B3h)" is set to "0: Disable."	0 : No motion 1: Clear cumulative load
14	INFO-CLR	Release the information status.	0: No motion 1: Release information status
16	HMI	Release the function limitation of the MEXEO2.	0 : Function limitation 1: Release the function limitation
18	CCM	Change the control mode from the normal mode to the current control mode.	0 : Normal mode 1: Current control mode
19	PLS-XMODE	Change the number of input pulses and the magnification of the frequency.	0: No motion 1: Change magnification
20	PLS-DIS	Disable the pulse input.	0 : No motion 1: Pulse input disable
21	T-MODE	Disable the overload alarm.	0 : No motion 1: Disable the overload alarm
22	CRNT-LMT	Execute current limiting.	0 : Release the current limitation 1: Current limitation
23	SPD-LMT	Execute speed limiting. This signal cannot be used in the cyclic synchronous position mode (CSP).	0 : Release the speed limiting 1: Speed limiting
26	FW-BLK	Stop operation in the forward direction.	0 : No motion 1: Stop the forward direction operation
27	RV-BLK	Stop operation in the reverse direction.	0 : No motion 1: Stop the reverse direction operation
28	FW-LS	A signal input from the limit sensor in the forward direction.	$\begin{array}{\|l\|} \hline \text { 0: OFF } \\ \text { 1:ON } \end{array}$
29	RV-LS	A signal input from the limit sensor in the reverse direction.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$
30	HOMES	A signal input from the mechanical home sensor.	$\begin{aligned} & \hline \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
31	SLIT	A signal input from the slit sensor.	$\begin{aligned} & \hline \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$

Assignment No.	Signal name	Function	Status
80	R0	General signals.	$\begin{aligned} & 0: \text { OFF } \\ & \text { 1: ON } \end{aligned}$
81	R1		
82	R2		
83	R3		
84	R4		
85	R5		
86	R6		
87	R7		
88	R8		
89	R9		
90	R10		
91	R11		
92	R12		
93	R13		
94	R14		
95	R15		
96	CON	This signal is used to excite the motor. Use when pulse-input operation is performed.	0 : Motor non-excitation 1: Motor excitation
104	EXT1	This is an external latch signal of the touch probe 1.	$\begin{aligned} & 0: \text { OFF } \\ & 1: \text { ON } \end{aligned}$
105	EXT2	This is an external latch signal of the touch probe 2.	$\begin{aligned} & 0: \text { OFF } \\ & \text { 1: ON } \end{aligned}$

Note - When the same input signal is assigned to multiple input terminals, the function is executed if any of the terminals has input.

- When the HMI input is not assigned to the input terminals, this input is always turned 1. Also, when this input is assigned to both direct I/O (DIN0 to DIN5) and remote I/O (R-IN0 to R-IN15), the function is executed only when both of them are turned 1 .
- Output signals list

To assign signals via EtherCAT communication, use the "Assignment No." in the table instead of the signal names.

Assignment No.	Signal name	Function	Status
0	Not used	Set when the output terminal is not used.	-
1 to 127	Response signals (input signal_R)	Output in response to the corresponding input signal.	0 : Input signal is OFF 1: Input signal is ON
128	CONST-OFF	Output an OFF state all the time.	0: OFF
129	ALM-A	Output the alarm status of the driver (normally open).	0 : Alarm not present 1: Alarm present
130	ALM-B	Output the alarm status of the driver (normally closed).	0: Alarm present 1: Alarm not present
131	SYS-RDY	Output when the control power supply of the driver is turned on.	0 : During system preparation 1: System preparation is complete
132	READY	Output when the driver is ready to operate.	0: Not ready 1: Ready for operation
133	PLS-RDY	Output when the pulse input is enabled.	0 : Pulse input is disabled 1: Pulse input is enabled
134	MOVE	Output when the motor operates.	0: Motor stopped 1: Motor operating

Assignment No.	Signal name	Function	Status
135	INFO	Output the information status of the driver.	0: Information not present 1: Information present
136	SYS-BSY	Output when the driver is in internal processing status.	0 : No internal processed 1: During internal processing
137	ETO-MON	Output after the driver transitions to the power removal status until the motor puts into a state that can be excited.	0 : Excitation possible 1: Excitation not possible
138	IN-POS	Output when the positioning operation is complete. This signal is not output in the cyclic synchronous position mode (CSP).	0 : During positioning operation 1: Positioning operation is complete
140	TLC	Output when the output torque reaches the upper limit value.	0 : Inside torque range 1: Outside torque range
141	VA	Output when the operating speed reaches the target speed. This signal is not output in the cyclic synchronous position mode (CSP).	0 : Not reach the target speed 1: Reach the target speed
142	CRNT	Output while the motor is excited.	0 : Motor non-excitation 1: Motor excitation
143	AUTO-CD	Output when the motor is in automatic current cutback status.	0: Normal 1: Automatic current cutback status
144	HOME-END	Output upon completion of return-tohome operation and when position preset (P-PRESET) is executed.	0 : Not home 1: Home
145	ABSPEN	Output when the position coordinate is set.	0 : Position coordinate is not set 1: Position coordinate is set
149	PRST-DIS	Output when preset is required again to operate the motor after preset.	0: Normal 1: Preset is not set
150	PRST-STLD	Output when the mechanical home is set.	0 : Mechanical home is not set 1: Mechanical home has set
151	ORGN-STLD	Output when a mechanical home suitable to the product is set at the time of factory shipment.	0 : Mechanical home is not set 1: Mechanical home has set
152	RND-OVF	Output is inverted when the wrap range is exceeded. (Toggle action)	0 and 1 are switched every time the wrap range is exceeded.
153	FW-SLS	Output when the software limit in the forward direction is reached.	0 : Not reached the software limit in the forward direction 1: Reached the software limit in the forward direction
154	RV-SLS	Output when the software limit in the reverse direction is reached.	0 : Not reached the software limit in the reverse direction 1: Reached the software limit in the reverse direction
155	ZSG	Output every time the actual position of the motor rotates one revolution from the preset position.	0 : Normal 1: Motor one revolution
156	RND-ZERO	Output if the motor is at the home of wrap range when the "Wrap setting (41C7h)" is set to "Enable."	0 : Not wrap home 1:Wrap home
157	TIM	Output every time the motor output shaft rotates 7.2° with reference to the command position.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1:ON } \end{aligned}$

Assignment No.	Signal name	Function	Status
160	AREAO	Output when the motor is within the AREAO.	0: Outside AREA 1: Inside AREA
161	AREA1	Output when the motor is within the AREA1.	
162	AREA2	Output when the motor is within the AREA2.	
163	AREA3	Output when the motor is within the AREA3.	
164	AREA4	Output when the motor is within the AREA4.	
165	AREA5	Output when the motor is within the AREA5.	
166	AREA6	Output when the motor is within the AREA6.	
167	AREA7	Output when the motor is within the AREA7.	
168	MPS	Output when the main power supply is turned on.	0: Main power supply OFF 1: Main power supply ON
169	MBC	Output when the electromagnetic brake is in a state of releasing.	0 : Electromagnetic brake is a state of holding. 1: Electromagnetic brake is a state of releasing.
170	RG	Output when the motor is in a regeneration state.	0 : Normal 1: Regeneration state
172	EDM-MON	Output when both HWTO1 and HWTO2 input signals are turned OFF.	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 0: \text { OFF } \\ \text { 1:ON } \end{array}$
173	HWTOIN-MON	Output when either HWTO1 or HWTO2 input signal is turned OFF.	$\begin{array}{\|l\|l\|l\|} \hline \text { 0: OFF } \\ \text { 1:ON } \end{array}$
180	USR-OUTO	Output AND or OR of two types of output signals.	$\begin{aligned} & \text { 0: OFF } \\ & \text { 1: ON } \end{aligned}$
181	USR-OUT1		
192	CRNT-LMTD	Output when current limiting is executed.	0 : Without current limitation 1: With current limitation
193	SPD-LMTD	Output when speed limiting is executed.	0 : Without speed limiting 1: With speed limiting
196	OPE-BSY	Output when internal oscillation is executed.	0 : No internal oscillation 1: During internal oscillation
203	PLS-LOST	Output if a pulse is input when the pulse input is disabled.	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 0: OFF } \\ \hline \end{array}$
204	DCMD-RDY	Output when the driver is ready to operate.	0: Not ready 1: Ready for operation
205	DCMD-FULL	Output when data is written in the buffer area. If an operation of Set of Set-points is performed in the profile position mode, the operation command is written in the buffer area.	0 : No data in buffer 1: Data in buffer
224	INFO-USRIO	Output when corresponding information is generated.	0 : Information not present 1: Information present
225	INFO-POSERR		
226	INFO-DRVTMP		
227	INFO-MTRTMP		
228	INFO-OVOLT		
229	INFO-UVOLT		
230	INFO-OLTIME		
232	INFO-SPD		

Assignment No.	Signal name	Function	Status
233	INFO-START	Output when corresponding information is generated.	0 : Information not present 1: Information present
234	INFO-ZHOME		
235	INFO-PR-REQ		
237	INFO-EGR-E		
238	INFO-RND-E		
240	INFO-FW-OT		
241	INFO-RV-OT		
242	INFO-CULD0		
243	INFO-CULD1		
244	INFO-TRIP		
245	INFO-ODO		
252	INFO-DSLMTD		
253	INFO-IOTEST		
254	INFO-CFG		
255	INFO-RBT		

5 Position coordinate management

5-1 Overview of position coordinate management

The AZ Series manages the position coordinate of the motor with the ABZO sensor (mechanical multi-rotation absolute sensor). The present position coordinate is mechanically recorded inside the ABZO sensor. Therefore, even if the motor output shaft was externally rotated while the power was OFF, the absolute coordinate against the home can be maintained.
The coordinate is set in the following flow.
Connect the motor and the driver and turn on the control power supply.
The initial coordinate is generated automatically.

Set the mechanical home. Factory home or user home
Set the generation range of the initial coordinate and the wrap range. \downarrow Turn on the control power supply again. The changed parameter is updated.

About ABZO sensor
The ABZO sensor is a mechanical multi-rotation absolute sensor that does not require a battery.
It stores the present position as an absolute position until the number of revolutions of the motor output shaft exceeds $1,800(*)$. The present position is maintained even if the control power supply is turned off.
The number of count is reset to 0 when the number exceeds $1,800(*)$, and the number is newly counted from 1.

* The multi-rotation amount varies depending on the motor frame size. Check with the following table.

Multi-rotation amount of ABZO sensor

Motor frame size [mm(in.)]	Specifications of ABZO sensor
$20(0.79), 28(1.10)$	900 revolutions
$40(1.57), 42(1.65), 60(2.36)$,	
$85(3.35), 90(3.54)$	1,800 revolutions

About initial coordinate generation

Initial coordinate generation indicates to decide how to use the rotation range of up to 1,800 revolutions (or 900 revolutions) that the ABZO sensor can manage. There are four parameters required for initial coordinate generation as shown next. These parameters are read when the control power supply is turned on.

- Initial coordinate generation \& wrap coordinate setting (47F2h)
- Initial coordinate generation \& wrap setting range (41C9h)
- Initial coordinate generation \& wrap range offset ratio (41CBh)
- Initial coordinate generation \& wrap range offset value (41CCh)
memo Regardless of whether the wrap function is enabled or disabled, the initial coordinate is generated whenever the control power supply is turned on.

- Factory setting example of the motor

An example of the motor of the frame size 60 mm (2.36 in .) is shown.
To use coordinates both in forward and reverse directions, 1,800 revolutions are divided into positive and negative revolutions, 50% for each direction.

- Setting example of motorized actuator

The following is an example to set the home of a motorized actuator to 30 mm from the motor side.

- Model of motorized actuator: 4
- Stroke of motorized actuator: 600 mm
- Pitch of motorized actuator: $6 \mathrm{~mm} / \mathrm{rev}$

Concept of initial coordinate

Initial coordinate generation range $=\frac{\text { Stroke }}{\text { Pitch }}=\frac{600}{6}=100 \mathrm{rev}$
Wrap range offset ratio $=\frac{\text { Home }}{\text { Stroke }} \times 100=\frac{30}{600} \times 100=5(\%)$

From the above, the actual coordinate is in the range of -5 to 95 revolutions.

Setting example of parameters

Index	Parameter name	Setting value
$47 F 2 \mathrm{~h}$	Initial coordinate generation \& wrap coordinate setting	$1:$ Manual setting
41 C 9 h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	1,000
41 CBh	Initial coordinate generation \& wrap range offset ratio $[1=0.01 \%]$	500
41 CCh	Initial coordinate generation \& wrap range offset value	0 step

- Wrap function

The wrap function is a function to automatically preset the position information of the current position when the number of revolutions of the motor output shaft exceeds the set range. Setting of wrap offset allows you to limit the operation area of the equipment and control the index table with coordinates on the positive and negative sides. For the specific setting methods, refer to p.158.

Note To set the wrap function, change the "Initial coordinate generation \& wrap coordinate setting (47F2h)" to "1: Manual setting." [Initial value: 0 (Prioritize ABZO setting)] When this parameter is changed, turn on the control power supply of the driver again.

- Concept of wrap setting

This explains as an example for the motor of the frame size 60 mm (2.36 in .).
With wrap setting, 1,800 revolutions managed by the ABZO sensor are divided evenly to generate coordinates within the number of revolutions divided evenly.
Therefore, set a value by which 1,800 can exactly be divided.
Example: When the wrap function executes if the motor rotates 180 times in the same direction

Motor output shaft number of revolutions (rev) ${ }_{0}$

The present position of the motor is preset every 180 revolutions, however, the 32-bit counter in the driver is not preset.
Example: When the range of use of the motor is offset to -90 to 90 revolutions

When the wrap setting range is exceeded, the symbol is reversed.

- Setting example of index table

This is an example in which the index table is made rotate once when the motor output shaft rotates 18 times.

- Gear ratio of motor: 18

Concept of initial coordinate

To allow the index table to rotate in both directions, 18 revolutions are divided into positive and negative rotations, 50% for each direction.

Setting example of parameters

Index	Parameter name	Setting value
$47 F 2 h$	Initial coordinate generation \& wrap coordinate setting	$1:$ Manual setting
41 C 7 h	Wrap setting	$1:$ Enable
41 C 9 h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	180
41 CBh	Initial coordinate generation \& wrap range offset ratio [1=0.01 \%]	5,000
$41 C C h$	Initial coordinate generation \& wrap range offset value	0 step

- Relationship between the wrap function and the 32-bit counter inside the driver

The 32-bit counter inside the driver outputs the position information of the motor as the number of steps regardless of whether the wrap function is enabled or disabled.
When the wrap function is enabled, the relationship between the wrap coordinate and 32-bit counter are as follows.
Example:
If the wrap function is performed when the motor rotates 180 revolutions in the same direction

The present position of the motor is preset by 180 revolutions, but the 32-bit counter is not preset.
The value of the 32-bit counter can be checked by the "Command position 32-bit counter (4091h)."
The 32-bit counter goes around between -2,147,483,648 to 2,147,483,647.
It shows 2,147,483,647 after - 2,147,483,648,
and after that it shows in descending order.

It shows $-2,147,483,648$ after 2,147,483,647, and after that it shows in ascending order.

5-2 Position coordinate origin

When the position coordinate has been set, the ABSPEN output is turned ON.
Note If the position coordinate has not been set, the next operation cannot be performed.

- High-speed return-to-home operation
- Absolute positioning operation (when the "Permission of absolute positioning without setting absolute coordinates (4148h)" is "0: Disable")

Related object

Index	Parameter name	Description	Initial value
4148 h	Permission of absolute positioning without setting absolute coordinates	Permits absolute positioning operation when the position coordinate is not set. Setting range $0:$ Disable $1:$ Enable	0

■ Mechanical home

The mechanical home is the home stored by the ABZO sensor. The mechanical home includes the "factory home" written in the ABZO sensor at the time of factory shipment and the "user home" set by performing return-to-home operation or position preset (P-PRESET).

- Factory home

The factory home is set in products with which the mechanism is pre-assembled to the motor, such as motorized actuators. It cannot be changed.
If the factory home is set, the ORGN-STLD output is turned ON.

- User home

When the user home is set by performing return-to-home operation or position preset (P-PRESET), the PRST-STLD output is turned ON. The user home can be released by "Position preset clear" of the MEXEO2.
If the user home is set, the home information is written to the non-volatile memory. The non-volatile memory can be rewritten approximately 100,000 times.

■ Setting of mechanical home

To set the mechanical home, perform the position preset (P-PRESET) or return-to-home operation. When the mechanical home coordinate is set, operation is performed on coordinates with the mechanical home in the center.

- Position preset

When position preset (P-PRESET) is executed, the command position and the actual position have the values set in the "Home offset (607Ch)" and the home is set.

Related objects

Index	Parameter name	Description	Initial value
607 Ch	Home offset	Sets the preset position. Setting range $-2,147,483,648$ to 2,147,483,647 steps	0
4148 h	Permission of absolute positioning without setting absolute coordinates	Permits absolute positioning operation when the position coordinate is not set. Setting range $0:$ Disable $1:$ Enable	0

- Return-to-home operation

When return-to-home operation is performed, the mechanical home can be set.

Cases in which the position coordinate is not set

In the following cases, the position coordinate is not set. The ABSPEN output is turned OFF.

- Factory setting
- When position preset (P-PRESET) is performed with the "Home offset (607 Ch)" set to a value other than " 0 " and then resolution is changed.
- When "Position preset clear" under "Communication" menu of the MEXE02 is executed.
- During return-to-home operation

5-3 Parameters related to ABZO sensor

With the $\mathbf{A Z}$ Series, the specification of the ABZO sensor and parameters based on the pre-assembled mechanism to the motor are written in the ABZO sensor in advance.

Related objects

Index	Parameter name	Description	Initial value
47FOh	Mechanism settings	To change the mechanism settings parameter, select manual setting. Setting range 0 : Prioritize ABZO setting 1: Manual setting	1
47F1h	Gear ratio setting	Sets the gear ratio for geared motor. When "0: Gear ratio setting disable" is set, the gear ratio is considered as "1." Setting range 0 : Gear ratio setting disable 1 to 32,767: Gear ratio ($1=0.01$)	0
47F2h	Initial coordinate generation \& wrap coordinate setting	To change the initial coordinate generation \& wrap coordinate parameter, select manual setting. Setting range 0 : Prioritize ABZO setting 1: Manual setting	0
47F3h	Mechanism limit parameter setting	Disables the ABZO setting of the mechanism limit parameter. Setting range 0 : Follow ABZO setting 1: Disable	0

Index	Parameter name	Description	Initial value
47F4h	Mechanism protection parameter setting	Disables the ABZO setting of the mechanism protection parameter. Setting range 0: Follow ABZO setting 1: Disable	
47F5h	JOG/HOME/ZHOME operation setting	To change the parameter for JOG operation and return-to- home operation, select manual setting. Setting range $0:$ Prioritize ABZO setting $1:$ Manual setting	0

- When the parameter of the wrap function is set

- Setting example: When the wrap range is set to - 50 to 50 revolutions

1. Change the "Initial coordinate generation \& wrap coordinate setting (47F2h)" to "1: Manual setting." When it is changed to " 1 : Manual setting," the following driver parameters can be set manually.

- Wrap setting
- The number of the RND-ZERO output in wrap range
- Initial coordinate generation \& wrap setting range
- Initial coordinate generation \& wrap range offset ratio
- Initial coordinate generation \& wrap range offset value

2. Set each parameters as follows.

Index	Parameter name	Setting value
41 C 7 h	Wrap setting	$1:$ Enable
41 CDh	The number of the RND-ZERO output in wrap range	1
41C9h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	1,000
41 CBh	Initial coordinate generation \& wrap range offset ratio [1=0.01 \%]	5,000
41 CCh	Initial coordinate generation \& wrap range offset value	0 step

5-4 Mechanism settings parameter

The mechanism settings parameter is a parameter required for combined use with the mechanism such as the geared motor and motorized actuator.

Note

To change the mechanism settings parameter, change the "Mechanism settings (47F0h)" to " 1 :
Manual setting." [Initial value: 1 (Manual setting)]
When this parameter is changed, turn on the control power supply of the driver again.

Motor rotation direction

Set the relationship between the coordinate system of the motor and the actual rotation direction.

Related object

Index	Parameter name	Description	Initial value
41C2h	Motor rotation direction	Sets the rotation direction of the motor output shaft. Setting range 0: Positive side=Counterclockwise 1: Positive side=Clockwise 2: Positive side=Counterclockwise (the driver parameter is applied) 3: Positive side=Clockwise (the driver parameter is applied)	1

5-5 Initial coordinate generation \& wrap coordinate parameter

These are parameters to be used for generation of the coordinate system.

- Wrap function

For the wrap function, refer to p.153.

- Related operation mode wrap absolute push-motion

When the following operations are performed with the profile position mode (PP), set the wrap function.

- Wrap absolute positioning operation
- Wrap proximity positioning operation
- Wrap forward direction absolute positioning operation
- Wrap reverse direction absolute positioning operation
- Wrap absolute push-motion operation
- Wrap proximity push-motion operation
- Wrap forward direction push-motion operation
- Wrap reverse direction push-motion operation

Related objects

Index	Parameter name	Description	Initial value
414Fh	Wrap positioning mode	Sets the operation mode for wrap positioning operation. Setting range 0: Wrap absolute positioning 1: Wrap proximity 2: Wrap forward direction 3: Wrap reverse direction	0
47F2h	Initial coordinate generation \& wrap coordinate setting	To use the wrap function, select manual setting. Setting range 0: Prioritize ABZO setting 1: Manual setting	0
41C7h	Wrap setting	Sets the wrap function. Setting range 0: Disable 1: Enable	1
41C9h	Initial coordinate generation \& wrap setting range	Sets the wrap range. The command position returns to 0 when the motor has rotated for the number of times set here. Setting range Refer to the next table.	10
41CBh	Initial coordinate generation \& wrap range offset ratio	Sets the offset ratio of the wrap range. Setting range 0 to 10,000 (1=0.01 \%)	5,000
41CCh	Initial coordinate generation \& wrap range offset value	Sets the amount of offset of the wrap range. Setting range $-536,870,912 ~ t o ~$ $536,870,911$ steps	0

Value that can be set in the "Initial coordinate generation \& wrap setting range (41C9h)" ($1=0.1$ rev)
Since the internal coordinate of the ABZO sensor is $1,800 \mathrm{rev}$ (or 900 rev), select a value from the table, and set in the "Initial coordinate generation \& wrap setting range (41C9h)."
In the table, the values which are surrounded with thick box border cannot be set in 900 rev.

Wrap setting range [rev]						
5	18	48	120	250	720	2,000
6	20	50	125	300	750	2,250
8	24	60	144	360	900	3,000
9	25	72	150	375	1,000	3,600
10	30	75	180	400	1,125	4,500
12	36	80	200	450	1,200	6,000
15	40	90	225	500	1,500	9,000
16	45	100	240	600	1,800	18,000

- Setting example

When "Initial coordinate generation \& wrap range offset ratio (41CBh)" is set to "50 \%" and "Initial coordinate generation \& wrap range offset value (41CCh)" to "0 step"

Example 1: Coordinate when the wrap setting range is 1 rev and the resolution is $10,000 \mathrm{P} / \mathrm{R}$

Index	Sub	Parameter name	Setting value
6091 h	01 h	Electronic gear A	1
	02 h	Electronic gear B	1
47 F 2 h	00 h	Initial coordinate generation \& wrap coordinate setting	1 : Manual setting
41 C 7 h	00 h	Wrap setting	$1:$ Enable
41 C 9 h	00 h	Initial coordinate generation \& wrap setting range $[1=0.1 \mathrm{rev}]$	10
41 CBh	00 h	Initial coordinate generation \& wrap range offset ratio $[1=0.01 \%]$	5,000
41 CCh	00 h	Initial coordinate generation \& wrap range offset value	0 step

Position coordinate image

When the parameters are set as in the table above, the motor can be operated on coordinates in the figure.

Example 2: Coordinate when the wrap setting range is $1,800 \mathrm{rev}$ and the resolution is $10,000 \mathrm{P} / \mathrm{R}$

Index	Sub	Parameter name	Setting value
6091 h	01 h	Electronic gear A	1
	02 h	Electronic gear B	1
47 F 2 h	00 h	Initial coordinate generation \& wrap coordinate setting	$1:$ Manual setting
41 C 7 h	00 h	Wrap setting	$1:$ Enable
41 C 9 h	00 h	Initial coordinate generation \& wrap setting range [1=0.1 rev]	18,000
41 CBh	00 h	Initial coordinate generation \& wrap range offset ratio [1=0.01 \%]	5,000
41 CCh	00 h	Initial coordinate generation \& wrap range offset value	0 step

Position coordinate image

When the parameters are set as in the table above, the motor can be operated on coordinates in the figure.

Note If the "Wrap setting (41 C 7 h)" or the "Initial coordinate generation \& wrap setting range (41 C 9 h)" is changed, the absolute position may be shifted. When the parameter is changed, perform preset (P-PRESET) or return-to-home operation.

- Setting condition of the "Initial coordinate generation \& wrap setting range (41C9h)"

When the wrap range meets the following condition, continuous rotation in the same direction becomes possible with the home maintained.

$$
\begin{aligned}
& \text { Condition (1) } \frac{1,800^{*}}{\text { Wrap setting range }}=\text { Integer } * \text { The motors of frame size } 20 \mathrm{~mm}(0.79 \mathrm{in} .) \text { and } 28 \mathrm{~mm}(1.10 \mathrm{in} \text {.) are } 900 . \\
& \text { Condition (2) Wrap setting range } \times \text { Resolution }=\text { Wrap setting range } \times \frac{\text { Electronic gear } B}{\text { Electronic gear } A} \times 10,000=\text { Integer }
\end{aligned}
$$

If the setting condition of the "Initial coordinate generation \& wrap setting range (41C9h)" is not met even though the "Wrap setting (41C7h)" is set to "1: Enable," information of wrap setting error is generated. If the control power supply is turned on again or configuration is executed while the information of wrap setting error is present, an alarm of wrap setting error is generated.

Setting example 1

- Wrap setting range: 100 rev
- Resolution: 10,000 P/R (electronic gear $A=1$, electronic gear $B=1$)
- Motor: Standard motor (gear ratio 1)

Condition (1) $\frac{1,800}{\text { Wrap setting range }}=\frac{1,800}{100}=18$
Condition (2) Wrap setting range $\times \frac{\text { Electronic gear } B}{\text { Electronic gear } A} \times 10,000=100 \times \frac{1}{1} \times 10,000=1,000,000$
Both Condition (1) and (2) are integers and this meets the setting condition. Wrap function can be executed.

Setting example 2

- Wrap setting range: 14.4 rev
- Resolution: 3,333.333... P/R (electronic gear $A=3$, electronic gear $B=1$)
- Motor: TS geared type (gear ratio 3.6)

Condition (1) $\frac{1,800}{\text { Wrap setting range }}=\frac{1,800}{14.4}=125$
Condition (2) Wrap setting range $\times \frac{\text { Electronic gear } B}{\text { Electronic gear } A} \times 10,000=14.4 \times \frac{1}{3} \times 10,000=48,000$

Both Condition (1) and (2) are integers and this meets the setting condition. Wrap function can be executed.

Setting example 3

- Wrap setting range: 4.5 rev
- Resolution: 10,000 P/R (electronic gear $A=1$, electronic gear $B=1$)
- Actuator: DGII Series (gear ratio 18)

Condition (1) $\frac{1,800}{\text { Wrap setting range }}=\frac{1,800}{4.5}=400$
Condition (2) Wrap setting range $\times \frac{\text { Electronic gear } B}{\text { Electronic gear } A} \times 10,000=4.5 \times \frac{1}{1} \times 10,000=45,000$

Both Condition (1) and (2) are integers and this meets the setting condition. In the case of this setting, wrap function is executed every time the motor rotates by 90 degrees on the output shaft of DGII Series.

Setting example 4

- Wrap setting range: 1,000 rev
- Resolution: 10,000 P/R (electronic gear $A=1$, electronic gear $B=1$)
- Motor: PS geared type (gear ratio 20)

Condition (1) $\frac{1,800}{\text { Wrap setting range }}=\frac{1,800}{1,000}=1.8$
Condition (2) Wrap setting range \times Resolution $=1,000 \times 10,000=10,000,000$
Condition (1) is not an integer and this does not meet the setting condition. The information of wrap setting error is generated and wrap function cannot be executed.

- Wrap offset function

The position of the boundary point of the wrap range can be offset by using the mechanical home as a reference. Wrap offset is set in the "Initial coordinate generation \& wrap range offset ratio (41CBh)" and the "Initial coordinate generation \& wrap range offset value (41CCh)."

- Wrap offset ratio setting

When the "Initial coordinate generation \& wrap range offset ratio (41CBh)" is set, the wrap range can be offset in the negative direction.

Setting example: When the wrap range is $1,800 \mathrm{rev}$ and the resolution is $10,000 \mathrm{P} / \mathrm{R}$

- Wrap range offset value setting

For the coordinate system offset in the "Initial coordinate generation \& wrap range offset ratio (41CBh)," the coordinate can be shifted by step.

Note When the coordinate is set in the "Initial coordinate generation \& wrap range offset value (41CCh)," information of wrap setting error is generated if the home is not included in the coordinate. If the control power supply is turned on again or configuration is executed while the information of wrap setting error is present, an alarm of wrap setting error is generated.

Setting example 1:

When the wrap range is $1,800 \mathrm{rev}$, the resolution $10,000 \mathrm{P} / \mathrm{R}$, and the wrap offset ratio setting 50%.

Setting example 2 :

When the wrap range is 1,800 rev, the resolution $10,000 \mathrm{P} / \mathrm{R}$, and the wrap offset ratio setting 0%.

RND-ZERO output

The RND-ZERO output is a signal output for each boundary point of division when the wrap range is divided evenly with the home as a reference. The number of division can be set in the "The number of the RND-ZERO output in wrap range (41CDh)." The RND-ZERO output is output when the "Wrap setting (41C7h)" parameter is set to "1: Enable."

- Usage example 1

When the RND-ZERO signal is output for every rotation of the output shaft (In case of wrap range of $1,800 \mathrm{rev}$ and a geared motor of gear ratio 7.2)

The number of the RND-ZERO output in wrap range $=\frac{\text { Wrap range }}{\text { Gear ratio }}=\frac{1,800}{7.2}=250$

In this usage example, you can check that the motor is in the home. With a geared motor, it can be used as a Z-phase signal that outputs one pulse for every rotation.

- Usage example 2

When the movable range is evenly divided by 90 degrees and the RND-ZERO signal is output for a certain travel amount

Number of division of movable range $=\frac{360^{\circ}}{90^{\circ}}=4$
$\begin{aligned} & \text { The number of the RND-ZERO } \\ & \text { output in wrap range }\end{aligned}=\frac{\text { Wrap range }}{\text { Gear ratio }} \times$ Number of division of movable range $=\frac{1,800}{18} \times 4=400$
In this usage example, the signal can be output regularly during operation of the motorized actuator or hollow rotary actuator. It can be used to synchronize multiple motors and to operate by inputting the RND-ZERO signal to other system.

Related object

Index	Parameter name	Description	Initial value
$41 C D h$	The number of the RND-ZERO output in wrap range	Sets the number of times to turn the RND-ZERO output ON in the wrap range. Setting range 1 to $536,870,911$ divisions	1

Save of parameters

The parameters are saved in RAM or non-volatile memory of the driver. The parameters saved in RAM are erased once the control power supply is cut off, however, the parameters saved in the non-volatile memory are saved even if the control power supply is cut off. When the control power is applied to the driver, the parameters saved in the nonvolatile memory are sent to RAM, and the recalculation and setup for the parameters are executed in RAM.
When the parameters are set to driver via EtherCAT communication, they are saved in the RAM space.
To save the parameters stored in the RAM to the non-volatile memory, execute the "Write batch NV memory (40C9h)" of the maintenance command.

Note Do not turn off the control power supply while writing in the non-volatile memory, and also do not turn off within 5 seconds after the completion of writing. Doing so may abort writing the data and cause an alarm of EEPROM error to generate (alarm code 41h).
memo The non-volatile memory can be rewritten approximately 100,000 times.

How to execute maintenance commands

The following two methods are available to execute maintenance commands. Use them selectively in accordance with the intended use.

- Writing 1 to data (recommended)

When data is changed from 0 to 1 after 1 is written to it, the command is executed.
To execute the same command again, restore the data to 0 and then write 1 . It is safe, because the command is not executed in succession even if 1 is written from the EtherCAT master continuously.

- Writing 2 to data

When 2 is written to data, the command is executed. After execution, the data is restored to 1 automatically. Data does not need to restore to 1 , and it can be written consecutively.
If commands which take time to write to the non-volatile memory such as "Write batch NV memory (40C9h)" are executed consecutively, increase the length of the intervals between commands.

7 Object dictionary

This chapter explains the details of objects.

7-1 Composition of the object dictionary

Objects are constructed as follows.

Index (Hex)	Object	Overview
1000h to 1FFFh	CoE communication area	CoE communication area
2000h to 3FFFh	Manufacturer specific area	Not used
4000h to 4FFFh		Driver object
5000h to 5FFFh		Not used
6000h to 67FFh	Profile area	Profile area

Object dictionary item

Item	Description			
Index, sub, name	Index, sub-Index, and name of objects			
	Definition objets of data type. Abbreviations described in the table below are used in this manual.			
	Abbreviation	Data type	Description	Range of value
	BOOL	Boolean	1-bit unsigned data	0, 1
	INT8	Integer8	8-bit signed data	-128 to 127
	INT16	Integer16	16-bit signed data	-32,768 to 32,767
Type	INT32	Integer32	32-bit signed data	$\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \end{aligned}$
	U8	Unsigned8	8-bit unsigned data	0 to 255
	U16	Unsigned16	16-bit unsigned data	0 to 65,535
	U32	Unsigned32	32-bit unsigned data	0 to 4,294,967,295
	STRING	Visible String	Character string	-
Access	Access method of objects. - RW: Read and write of values are possible. - RO: Only read of values is possible.			
PDO	Indicates whether the PDO mapping of objects is possible. \bullet RxPDO: Mapping to RxPDO is possible. - TxPDO: Mapping to TxPDO is possible. - No: Mapping to PDO is not possible.			
Save	Indicates whether data is saved in the non-volatile memory when the batch non-volatile memory write was executed. - O: Saved in the non-volatile memory. - -: Not saved in the non-volatile memory.			
Update	Indicates the timing to update the change when a value in the object was changed. - A: Update immediately - B: Update after operation stop - C: Update after executing the configuration - D: Update after cycling the control power supply ON again			

7-2 Objects of the CoE communication area

These are objects to set about EtherCAT communication or to indicate the status.

- Device type (1000h)

Indicates the device profile.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1000 h	00h	Device type	U32	RO	No	-	00040192 h	-

Details of range

Bit	Name	Description
0 to 15	Device profile	0192h: DS402
16 to 31	Additional information	0004h: ST Single axis driver

- Error register (1001h)

Indicates the error status of the driver. If an error occurs in the driver, the "General error (bit0)" is changed to 1 . It is changed to 0 when the error is cleared.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1001 h	00 h	Error register	U8	RO	No	-	Bit0: General error Bit1 to 7: Reserved	-

- Manufacturer device name (1008h)

Indicates the product model.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1008 h	00h	Manufacturer device name	STRING	RO	No	-	AZD-AED AZD-CED AZD-KED	-

- Manufacturer hardware version (1009h)

Indicates the hardware version of the driver. "V.1.00" is indicated when the version is 1.00 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1009h	00h	Manufacturer hardware version	STRING	RO	No	-	Hardware version	-

- Manufacturer software version (100Ah)

Indicates the software version of the driver. "V.1.00" is indicated when the version is 1.00 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
100Ah	00h	Manufacturer software version	STRING	RO	No	-	Software version	-

- Identity object (1018h)

Indicates the product information of the driver. The serial number is always 0 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1018h	00h	Number of entries	U8	RO	No	-	4	-
	01h	Vendor ID	U32	RO	No	-	0000 02BEh	-
	02h	Product code	U32	RO	No	-	AZD-AED: 0000 13E9h AZD-CED: 0000 13EAh AZD-KED: 0000 13E5h	-
	03h	Revision number	U32	RO	No	-	0000 xxxxh	-
	04h	Serial number	U32	RO	No	-	0	-

- Receive PDO mapping 1 (1600h)

Sets the receive PDO mapping 1.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1600h	00h	Number of entries	U8	RW	No	-	0 to 16 (Initial value: 3)	A
	01h	Mapping entry 1	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6040 0010h)	A
	02h	Mapping entry 2	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 607A 0020h)	A
	03h	Mapping entry 3	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6060 0008h)	A
	04h	Mapping entry 4	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 0000 0000h)	A
	05h	Mapping entry 5	U32	RW	No	-		A
	06h	Mapping entry 6	U32	RW	No	-		A
	07h	Mapping entry 7	U32	RW	No	-		A
	08h	Mapping entry 8	U32	RW	No	-		A
	09h	Mapping entry 9	U32	RW	No	-		A
	OAh	Mapping entry 10	U32	RW	No	-		A
	OBh	Mapping entry 11	U32	RW	No	-		A
	OCh	Mapping entry 12	U32	RW	No	-		A
	ODh	Mapping entry 13	U32	RW	No	-		A
	OEh	Mapping entry 14	U32	RW	No	-		A
	OFh	Mapping entry 15	U32	RW	No	-		A
	10h	Mapping entry 16	U32	RW	No	-		A

- Receive PDO mapping 2 (1601h)

Sets the receive PDO mapping 2.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1601h	00h	Number of entries	U8	RW	No	-	0 to 16 (Initial value: 5)	A
	01h	Mapping entry 1	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6040 0010h)	A
	02h	Mapping entry 2	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 607A 0020h)	A
	03h	Mapping entry 3	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 60FF 0020h)	A
	04h	Mapping entry 4	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6060 0008h)	A
	05h	Mapping entry 5	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 60B8 0010h)	A
	06h	Mapping entry 6	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 0000 0000h)	A
	07h	Mapping entry 7	U32	RW	No	-		A
	08h	Mapping entry 8	U32	RW	No	-		A
	09h	Mapping entry 9	U32	RW	No	-		A
	OAh	Mapping entry 10	U32	RW	No	-		A
	OBh	Mapping entry 11	U32	RW	No	-		A
	OCh	Mapping entry 12	U32	RW	No	-		A
	ODh	Mapping entry 13	U32	RW	No	-		A
	OEh	Mapping entry 14	U32	RW	No	-		A
	OFh	Mapping entry 15	U32	RW	No	-		A
	10h	Mapping entry 16	U32	RW	No	-		A

- Transmit PDO mapping 1 (1A00h)

Sets the transmit PDO mapping 1.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1A00h	00h	Number of entries	U8	RW	No	-	0 to 16 (Initial value: 3)	A
	01h	Mapping entry 1	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6041 0010h)	A
	02h	Mapping entry 2	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6064 0020h)	A
	03h	Mapping entry 3	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6061 0008h)	A
	04h	Mapping entry 4	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 0000 0000h)	A
	05h	Mapping entry 5	U32	RW	No	-		A
	06h	Mapping entry 6	U32	RW	No	-		A
	07h	Mapping entry 7	U32	RW	No	-		A
	08h	Mapping entry 8	U32	RW	No	-		A
	09h	Mapping entry 9	U32	RW	No	-		A
	OAh	Mapping entry 10	U32	RW	No	-		A
	OBh	Mapping entry 11	U32	RW	No	-		A
	OCh	Mapping entry 12	U32	RW	No	-		A
	ODh	Mapping entry 13	U32	RW	No	-		A
	OEh	Mapping entry 14	U32	RW	No	-		A
	OFh	Mapping entry 15	U32	RW	No	-		A
	10h	Mapping entry 16	U32	RW	No	-		A

- Transmit PDO mapping 2 (1A01h)

Sets the transmit PDO mapping 2.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1A01h	00h	Number of entries	U8	RW	No	-	0 to 16 (Initial value: 8)	A
	01h	Mapping entry 1	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6041 0010h)	A
	02h	Mapping entry 2	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6064 0020h)	A
	03h	Mapping entry 3	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 6061 0008h)	A
	04h	Mapping entry 4	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 60B9 0010h)	A
	05h	Mapping entry 5	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 60BA 0020h)	A
	06h	Mapping entry 6	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 60BC 0020h)	A
	07h	Mapping entry 7	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 603F 0010h)	A
	08h	Mapping entry 8	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 60FD 0020h)	A
	09h	Mapping entry 9	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 0000 0000h)	A
	OAh	Mapping entry 10	U32	RW	No	-		A
	OBh	Mapping entry 11	U32	RW	No	-		A
	OCh	Mapping entry 12	U32	RW	No	-		A
	ODh	Mapping entry 13	U32	RW	No	-		A
	OEh	Mapping entry 14	U32	RW	No	-		A
	OFh	Mapping entry 15	U32	RW	No	-		A
	10h	Mapping entry 16	U32	RW	No	-		A

- Sync manager communication type (1C00h)

Sets the communication type of sync manager (SM).

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1 C00h	00 h	Number of entries	U8	RO	No	-	4	-
	01 h	Communication type sync manager 0	U8	RO	No	-	1: Mailbox output (EtherCAT master to driver)	-
	02 h	Communication type (ync manager 1	U8	RO	No	-	2: Mailbox input (Driver to EtherCAT master)	-
	03 h	Communication type sync manager 2	U8	RO	No	-	3: Process data output (EtherCAT master to driver)	-
	04 h	Communication type sync manager 3	U8	RO	No	-	4: Process data input (Driver to EtherCAT master)	-

- Sync manager 2 PDO assignment (1C12h)

Sets the object assigned in the process data output (receive PDO: RxPDO) of the sync manager 2 (SM2).
It can be changed when the EtherCAT communication state machine is pre-operational.
Refer to "Setting of PDO mapping object" on p. 94 for how to set the PDO mapping.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1C12h	$00 h$	Number of entries	U8	RW	No	-	0 to 1 (Initial value: 1)	A
	01 h	Index of assigned PDO 1	U16	RW	No	-	0000h to FFFFh (Initial value: 1600h)	A

- Sync manager 3 PDO assignment (1C13h)

Sets the object assigned in the process data input (transmit PDO: TxPDO) of the sync manager3 (SM3).
It can be changed when the EtherCAT communication state machine is pre-operational.
Refer to "Setting of PDO mapping object" on p .94 for how to set the PDO mapping.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1 C 13 h	00 h	Number of entries	U8	RW	No	-	0 to 1 (Initial value: 1)	A
	01 h	Index of assigned PDO 1	U16	RW	No	-	O000h to FFFFh (Initial value: 1 A00h)	A

- Sync manager 2 synchronization (1C32h)

Sets the synchronization type of the sync manager 2 (SM2) and indicates the status.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1C32h	00h	Number of entries	U8	RO	No	-	20h	-
	01h	Synchronization type	U16	RW	No	-	00h to 02h (Initial value: 02h)	A
	02h	Cycle time [ns]	U32	RO	No	-	-	-
	03h	Shift time [ns]	U32	RO	No	-	0	-
	04h	Synchronization types supported	U16	RO	No	-	0007h	-
	05h	Minimum cycle time [ns]	U32	RO	No	-	$\begin{aligned} & 0003 \text { D090h } \\ & \text { (250,000 ns) } \end{aligned}$	-
	06h	Calc and copy time [ns]	U32	RO	No	-	$\begin{aligned} & \begin{array}{l} 000186 \mathrm{AOh} \\ (100,000 \mathrm{~ns}) \end{array} \end{aligned}$	-
	07h	Reserved	U32	-	-	-	-	-
	08h	Reserved	U16	-	-	-	-	-
	09h	Delay time [ns]	U32	RO	No	-	0	-
	0Ah to 1Fh	Reserved	U16	-	-	-	-	-
	20h	Sync error	BOOL	RO	No	-	0	-

Details of sync manager 2 synchronization object

Sub	Name	Description
01 h	Synchronization type	00h: Free run mode (asynchronous) 0h: Sync manager 2 event synchronization mode 02h: DC mode (SYNC0 event synchronization)
02 h	Cycle time [ns]	Indicates the cycle time of the SYNC0 event.
03 h	Shift time [ns]	The shift time is not supported. The read value is always 0.
04 h	Synchronization types supported	Indicates the synchronization type supported. Bit0: Free run mode (asynchronous) Bit1: Sync manager 2 event synchronization mode Bit2: DC mode (SYNC0 event synchronization)
05 h	Minimum cycle time [ns]	Indicates the minimum cycle time supported.
06 h	Calc and copy time [ns]	Indicates the minimum value of the internal calc and copy time that is needed from the sync manager 2 event to the SYNC0 event.
09 h	Delay time [ns]	The delay time is not supported. The read value is always 0.
20 h	Sync error	Changes to 1 if the sync error is detected.

- Sync manager 3 synchronization (1C33h)

Sets the synchronization type of the sync manager 3 (SM3) and indicates the status.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
1C33h	00h	Number of entries	U8	RO	No	-	20h	-
	01h	Synchronization type	U16	RW	No	-	00h, 02h (Initial value) $22 h$	A
	02h	Cycle time [ns]	U32	RO	No	-	-	-
	03h	Shift time [ns]	U32	RO	No	-	0	-
	04h	Synchronization Types supported	U16	RO	No	-	0007h	-
	05h	Minimum cycle time [ns]	U32	RO	No	-	$\begin{aligned} & 0003 \text { D090h } \\ & (250,000 \mathrm{~ns}) \end{aligned}$	-
	06h	Calc and Copy Time [ns]	U32	RO	No	-	$\begin{aligned} & \text { 0002 49FOh } \\ & (150,000 \mathrm{~ns}) \end{aligned}$	-
	07h	Reserved	U32	-	-	-	-	-
	08h	Reserved	U16	-	-	-	-	-
	09h	Delay time [ns]	U32	RO	No	-	-	-
	OAh to 1Fh	Reserved	U16	-	-	-	-	-
	20h	Sync error	BOOL	RO	No	-	0	-

Details of sync manager 3 synchronization object

Sub	Name	Description
01 h	Synchronization type	O0h: Free run mode (asynchronous) 02h: DC mode (SYNC0 event synchronization) 22h: Sync manager 2 event synchronization mode
02 h	Cycle time [ns]	Indicates the cycle time of the SYNC0 event.
03 h	Shift time [ns]	The shift time is not supported. The read value is always 0.
04 h	Synchronization types supported	Indicates the synchronization type supported. Bit0: Free run mode (asynchronous) Bit1: Sync manager 2 event synchronization mode Bit2: DC mode (SYNC0 event synchronization)
05 h	Minimum cycle time [ns]	Indicates the minimum cycle time supported.
06 h	Calc and copy time [ns]	Indicates the minimum value of the internal calc and copy time that is needed from the sync manager 3 event to the SYNC0 event.
09 h	Delay time [ns]	The delay time is not supported. The read value is always 0.
20 h	Sync error	Changes to 1 if the sync error is detected.

7-3 Objects of the profile area

Objects in the profile area are defined by the CiA402 drive profile. Operations of the driver are set, and the status is indicated.

- Error code (603Fh)

Indicates the error code being generated in the driver.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
603Fh	$00 h$	Error code	U16	RO	TxPDO	-	-	-

memo If an alarm is generated in the driver, the error code is indicated. The lower 8 bits of the error code represents the alarm code, and the upper 8 bits represents FFh. When an alarm is not present, "0000h" is indicated. Refer to p. 205 for alarm code.

- Controlword (6040h)

Controls the transition of the drive state machine, start/stop of an operation, and others.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6040 h	00 h	Controlword	U16	RW	RxPDO	-	0000h to FFFFh (Initial value: 0000 h)	A

Details of range

Bit	Name	Description
0	Switch on	Controls the status of the drive state machine. Refer to "State transition of the drive state machine" on p. 99 for details.
1	Enable voltage	
2	Quick stop	
3	Enable operation	
4	Operation mode specific	It varies according to the operation mode. For details, refer to each operation mode of the "3 Drive profile."
5		
6		
7	Fault reset	Resets the alarm by changing from 0 to 1.
8	Halt	For details, refer to each operation mode of the "3 Drive profile."
9	Operation mode specific	
10	Reserved	Reserved
11	Manufacturer specific	Manufacturer-specific bit. For details, refer to each operation mode of the "3 Drive profile."
12		
13		
14		
15		

- Statusword (6041h)

Indicates the status of the drive state machine and the operation status of the driver.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6041 h	00h	Statusword	U16	RO	TxPDO	-	-	-

Details of range

Bit	Name		Description
0	Ready to switch on		
1	Switched on		
2	Operation enabled		
3	Indicates the status of the drive state machine.		
Refer to "Status output of the drive state machine" on p.100 for details.			

- Quick stop option code (605Ah)

Sets the action by the quick stop command. When the setting is changed while the quick stop is operating, the new setting is applied after stop.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
605Ah	00h	Quick stop option code	INT16	RW	No	O	$0,1,2$ (Initial value), $3,5,6,7$	A

Details of range

Setting value	Description
0	Current off
1	Decelerates to a stop at the "Profile deceleration (6084h)." Moves to "Switch on disabled" after stop.
2	Decelerates to a stop at the "Quick stop deceleration (6085h)." Moves to "Switch on disabled" after stop.
3	Stops immediately. Moves to "Switch on disabled" after stop.
5	Decelerates to a stop at the "Profile deceleration (6084h)." Keeps "Quick stop active" after stop.
6	Decelerates to a stop at the "Quick stop deceleration (6085h)." Keeps "Quick stop active" after stop.
7	Stops immediately. Keeps "Quick stop active" after stop.
memo	If the quick stop command is executed while decelerating to a stop, the deceleration switches to the quick stop deceleration. However, when the deceleration stop is performed by the STOP input signal the deceleration will not switch even if the quick stop command is executed.

- Shutdown option code (605Bh)

Sets the operation for when moving from "Operation enabled" to "Ready to switch on."

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
605 Bh	00 h	Shutdown option code	INT16	RW	No	O	0,1 (Initial value)	A

Details of range

Setting value	Description
0	Current off
1	Decelerates to a stop at the "Profile deceleration (6084h)." The motor changes to a non-excitation state after stop.

- Disable operation option code (605Ch)

Sets the operation for when moving from "Operation enabled" to "Switched on."

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
605 Ch	00 h	Disable operation option code	INT16	RW	No	0	0,1 (Initial value)	A

Details of range

Setting value	Description
0	Current off
1	Decelerates to a stop at the "Profile deceleration (6084h)." The motor changes to a non-excitation state after stop.

- Halt option code (605Dh)

Sets the operation for when the "Halt (bit8)" of the "Controlword (6040h)" was set.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
605 Dh	$00 h$	Halt option code	INT16	RW	No	O	1 (Initial value), 2,3	A

Details of range

Setting value	Description
1	Decelerates to a stop at the "Profile deceleration (6084h)." Keeps "Operation enabled" after stop.
2	Decelerates to a stop at the "Quick stop deceleration (6085h)." Keeps "Operation enabled" after stop.
3	Stops immediately. Keeps "Operation enabled" after stop.

- Modes of operation (6060h)

Sets the operation mode of the driver. Change the operation mode while the motor is stopped. When the setting is changed during operation, the new setting is updated after stop.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6060 h	00 h	Modes of operation	INT8	RW	RxPDO	O	0 (Initial value), 1,3, $6,8,9$	B

Details of range

Setting value	Description
0	Operation function disable
1	Profile position mode (PP)
3	Profile velocity mode (PV)
6	Homing mode (HM)
8	Cyclic synchronous position mode (CSP)
9	Cyclic synchronous velocity mode (CSV)

- Modes of operation display (6061h)

Indicates the operation mode that is enabled actually. The range is the same as "Modes of operation (6060h)."

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6061 h	00 h	Modes of operation display	INT8	RO	TxPDO	-	-	-

- Position demand value (6062h)

Indicates the command position. When the "Wrap setting (41 C 7 h)" is set to 1 , the value in the wrap range is indicated.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6062 h	00h	Position demand value [step]	INT32	RO	TxPDO	-	-	-

- Position actual value (6064 h)

Indicates the present position detected by the ABZO sensor. When the "Wrap setting (41 C 7 h)" is set to 1 , the value in the wrap range is indicated.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6064 h	00h	Position actual value [step]	INT32	RO	TxPDO	-	-	-

- Following error window (6065h)

Sets the condition under which the excessive position deviation alarm is generated.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6065 h	00 h	Following error windo $[1=0.01$ rev $]$	U32	RW	No	O	1 to 30,000 (Initial value: 300$)$	A

- Position window (6067h)

Sets the output range of the positioning completion output (IN-POS). It is the same as the "IN-POS positioning completion signal range" parameter of the AZ Series.
In the profile position mode, after positioning operation is properly completed, the Target Reached ($6041 \mathrm{~h}: \mathrm{Bit10}$) of the statusword changes 1 when the feedback position has converged in a range of the Position window (6067 h) with respect to the command position.
The IN-POS output range can be offset by the "IN-POS positioning completion signal offset (4704h)."

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6067 h	00 h	Position window $\left[1=0.1^{\circ}\right]$	U32	RW	No	O	0 to 180 (Initial value: 18)	A

- Velocity demand value (606Bh)

Indicates the present velocity demand value. (Hz)

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
606 Bh	00h	Velocity demand value $[\mathrm{Hz}]$	INT32	RO	TxPDO	-	-	-

- Velocity actual value (606Ch)

Indicates the present feedback speed. (Hz)

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
606 Ch	00 h	Velocity actual value $[\mathrm{Hz}]$	INT32	RO	TxPDO	-	-	-

- Target position (607Ah)

Sets the target position in the cyclic synchronous position mode and profile position mode.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
607Ah	$00 h$	Target position [step]	INT32	RW	RxPDO	-	$-2,147,483,648$ to $2,147,483,647$ (Initial value: 0)	A

- Home offset (607Ch)

Offsets the home after completing return-to-home operation in the homing mode. The command position and the actual position after completing return-to-home will be the value set in the home offset.
Since the offset value is written to the same register as the "Preset position (41C6h)," if the "Home offset (607Ch)" is changed, the "Preset position (41C6h)" will be the same value.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
607Ch	$00 h$	Home offset [step]	INT32	RW	No	0	$-2,147,483,648$ to $2,147,483,647$ (Initial value: 0)	A

- Software position limit (607Dh)

Sets the software limit. The Min. position limit represents the limit of the reverse direction, and the Max. position limit represents the limit of the forward direction.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
607 Dh	00h	Number of entries	U8	RO	No	-	2	-
	01h	Min. position limit [step]	INT32	RW	No	O	$-2,147,483,648$ to $2,147,483,647$ (Initial value: $-2,147,483,648)$	A
	02h	Max. position limit [step]	INT32	RW	No	O	$-2,147,483,648$ to $2,147,483,647$ (Initial value: $2,147,483,647)$	A

- Profile velocity (6081 h)

Sets the operating speed of the profile position mode.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6081 h	00 h	Profile velocity $[\mathrm{Hz}]$	U32	RW	RxPDO	0	0 to 4,000,000 (Initial value: 10,000)	A

- Profile acceleration (6083h)

Sets the acceleration for the profile position mode and profile velocity mode.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6083 h	00 h	Profile acceleration $\left[\right.$ step $\left./ \mathrm{s}^{2}\right]$	U32	RW	RxPD	O	1 to $1,000,000,000$ (Initial value: 300,000$)$	B

- Profile deceleration (6084h)

Sets the deceleration for the profile position mode and profile velocity mode.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6084 h	00 h	Profile deceleration $\left[\right.$ step/s $\left.\mathrm{s}^{2}\right]$	U32	RW	RxPDO	O	1 to $1,000,000,000$ (Initial value: 300,000)	B

- Quick stop deceleration (6085h)

Sets the deceleration for the quick stop. This is the deceleration for when the quick stop command of the drive state machine was enabled while the "Quick stop option code (605 Ah)" was set to 2 or 6 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6085 h	00 h	Quick stop deceleration $\left[\right.$ step $\left./ \mathrm{s}^{2}\right]$	U32	RW	RxPDO	O	1 to 1,000,000,000 (Initial value: $1,000,000)$	B

- Gear ratio (6091h)

Sets the electronic gear. The electronic gear A is the denominator of the electronic gear, and the electronic gear B is the numerator of the electronic gear.
If the electronic gear is set, the resolution per revolution of the motor output shaft can be changed. Refer to "4-2 Resolution" on p. 137 for details.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6091 h	00 h	Number of entries	U8	RO	No	-	2	-
	01 h	Electronic gear A	U32	RW	No	O	1 to 65,535 (Initial value: 1)	C
	02 h	Electronic gear B	U32	RW	No	O	1 to 65,535 (Initial value: 1)	C

- Homing method (6098h)

Sets the return-to-home method for return-to-home operation. Refer to p. 122 for details.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6098h	00 h	Homing method	INT8	RW	No	O	$17,18,24$ (Initial value), $28,35,37,-1$	B

Details of range

Setting value	Description
17	Return-to-home by the limit sensor (FW-LS/RV-LS), starts in the negative direction
18	Return-to-home by the limit sensor (FW-LS/RV-LS), starts in the positive direction
24	Return-to-home by the home sensor (HOMES), starts in the positive direction
28	Return-to-home by the home sensor (HOMES), starts in the negative direction
$35,37^{*}$	Home preset
-1	Return-to-home operation of our specifications

* 35 and 37 perform the same action.
- Homing speed (6099h)

Sets the operating speed and feedback speed for return-to-home operation. The feedback speed is the operating speed for when aligning with the home finally.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6099 h	00h	Number of entries	U8	RO	No	-	2	-
	01 h	Speed during search for switch [Hz]	U32	RW	No	O	1 to 4,000,000 (Initial value: 10,000)	B
	02 h	Speed during search for zero $[\mathrm{Hz}]$	U32	RW	No	O	1 to 10,000 (Initial value: 5,000)	B

- Homing acceleration (609Ah)

Sets the acceleration and deceleration for return-to-home operation.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
609Ah	$00 h$	Homing acceleration $\left[\right.$ [step/s $\left.\mathrm{s}^{2}\right]$	U32	RW	No	O	1 to 1,000,000,000 (Initial value: 300,000$)$	B

- Touch probe function (60B8h)

Sets the action of the touch probe. Refer to p. 135 for details.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60B8h	$00 h$	Touch probe function	U16	RW	RxPDO	-	0000h to FFFFh (Initial value: 0000 h$)$	A

Details of range

Bit	Name	Value	Definition
0	Touch probe 1 permission	0	Disables touch probe 1.
		1	Enables touch probe 1.
1	Touch probe 1 trigger action	0	First trigger action Latches only once on the first trigger.
		1	Continuous operation Latches every time a trigger is input.
2	Touch probe 1 trigger selection	0	Sets the external latch input EXT1 as a trigger.
		1	Sets the ZSG output or TIM output as a trigger.
3	Reserved	0	Reserved
4	Touch probe 1 positive value action	0	Disables the latch function at the positive value of a trigger.
		1	Enables the latch function at the positive value of a trigger.
5	Touch probe 1 negative value action	0	Disables the latch function at the negative value of a trigger.
		1	Enables the latch function at the negative value of a trigger.
6	Reserved	0	Reserved
7	Reserved	0	Reserved
8	Touch probe 2 permission	0	Disables touch probe 2.
		1	Enables touch probe 2.
9	Touch probe 2 trigger action	0	First trigger action Latches only once on the first trigger.
		1	Continuous operation Latches every time a trigger is input.
10	Touch probe 2 trigger selection	0	Sets the external latch input EXT1 as a trigger.
		1	Sets the ZSG output or TIM output as a trigger.
11	Reserved	0	Reserved
12	Touch probe 2 positive value action	0	Disables the latch function at the positive value of a trigger.
		1	Enables the latch function at the positive value of a trigger.
13	Touch probe 2 negative value action	0	Disables the latch function at the negative value of a trigger.
		1	Enables the latch function at the negative value of a trigger.
14	Reserved	0	Reserved
15	Reserved	0	Reserved

- Touch probe status (60B9h)

Indicates the status of the touch probe. Refer to p. 136 for details.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60B9h	00h	Touch probe status	U16	RO	TxPDO	-	-	-

Details of range

Bit	Name	Value	Definition
0	Touch probe 1 permission status	0	Touch probe 1 is disabled.
		1	Touch probe 1 is enabled.
1	Touch probe 1 positive value latch	0	Has not latch on the positive value of the touch probe 1.
		1	Latched on the positive value of the touch probe 1.

Bit	Name	Value	Definition
2	Touch probe 1 negative value latch	0	Has not latch on the negative value of the touch probe 1.
		1	Latched on the negative value of the touch probe 1.
3 to 7	Reserved	0	Reserved
8	Touch probe 2 permission status	0	Touch probe 2 is disabled.
		1	Touch probe 2 is enabled.
9	Touch probe 2 positive value latch	0	Has not latch on the positive value of the touch probe 2.
		1	Latched on the positive value of the touch probe 2.
10	Touch probe 2 negative value latch	0	Has not latch on the negative value of the touch probe 2.
		1	Latched on the negative value of the touch probe 2.
11 to 15	Reserved	0	Reserved

- Touch probe position 1 positive value (60BAh)

Indicates the position latched at the positive value of the touch probe 1.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60BAh	00h	Touch probe position 1 positive value [step]	INT32	RO	TxPDO	-	-	-

- Touch probe position 1 negative value (60 BBh)

Indicates the position latched at the negative value of the touch probe 1.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60BBh	$00 h$	Touch probe position 1 negative value [step]	INT32	RO	TxPDO	-	-	-

- Touch probe position 2 positive value (60 BCh)

Indicates the position latched at the positive value of the touch probe 2 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60BCh	$00 h$	Touch probe position 2 positive value [step]	INT32	RO	TxPDO	-	-	-

- Touch probe position 2 negative value (60BDh)

Indicates the position latched at the negative value of the touch probe 2.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60BDh	00h	Touch probe position 2 negative value [step]	INT32	RO	TxPDO	-	-	-

- Supported homing methods (60E3h)

Indicates the method of return-to-home supported by the driver.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60E3h	00h	Number of entries	U8	RO	No	-	6	-
	01h	1st supported homing method	U16	RO	No	-	17	-
	02h	2nd supported homing method	U16	RO	No	-	18	-
	03h	3rd supported homing method	U16	RO	No	-	24	-
	04h	4th supported homing method	U16	RO	No	-	28	-
	05h	5th supported homing method	U16	RO	No	-	35	-
	06h	6th supported homing method	U16	RO	No	-	37	-

Details of range

Setting value	Description
17	Return-to-home by the limit sensor (FW-LS/RV-LS), starts in the negative direction
18	Return-to-home by the limit sensor (FW-LS/RV-LS), starts in the positive direction
24	Return-to-home by the home sensor (HOMES), starts in the positive direction
28	Return-to-home by the home sensor (HOMES), starts in the negative direction
35,37 *	Home preset

* 35 and 37 perform the same action.
- Following error actual value (60F4h)

Indicates the deviation between the command position and feedback position (actual position).

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60 F4h	00 h	Following error actual value [step]	INT32	RO	TxPDO	-	-	-

- Digital inputs (60FDh)

Indicates the direct I/O status.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60FDh	$00 h$	Digital inputs	U32	RO	TxPDO	-	-	-

Details of range

Bit	Name	Description
0	RV-BLK *1	Status of the RV-BLK input (0: OFF, 1: ON) *2
1	FW-BLK *1	Status of the FW-BLK input (0: OFF, 1: ON) *2
2	HOMES *1	Status of the HOMES input (0: OFF, 1: ON) *2
3 to 15	-	Reserved
16	EXT1 *1	Status of the EXT1 input (0: OFF, 1: ON) *2
17	EXT2 *1	Status of the EXT2 input (0: OFF, 1: ON) *2
18,19	-	Reserved
20	ZSG	Status of the ZSG output (0: OFF, 1: ON) *2
21 to 23	-	Reserved
24	DIN0	Status of the DIN0 input (0: Not carrying current, 1: Carrying current) *3
25	DIN1	Status of the DIN1 input (0: Not carrying current, 1: Carrying current) *3
26	DIN2	Status of the DIN2 input (0: Not carrying current, 1: Carrying current) *3
27	DIN3	Status of the DIN3 input (0: Not carrying current, 1: Carrying current) *3
28	DIN4	Status of the DIN4 input (0: Not carrying current, 1: Carrying current) *3
29	DIN5	Status of the DIN5 input (0: Not carrying current, 1: Carrying current) *3
30,31	-	Reserved

*1 To acquire the status, input signals are required to assign to the input terminals INO to IN5 of the input signal connector (CN7). Assign using the "DIN0 input function (4840h)" to "DIN5 input function (4845h)."
*2 Normally open; ON: Carrying current, OFF: Not carrying current Normally closed; ON: Not carrying current, OFF: Carrying current
*3 Carrying current or "Not carrying current" state of the internal photocoupler is represented.

- Digital outputs (60FEh)

Controls the electromagnetic brake.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60FEh	$00 h$	Number of entries	U8	RO	No	-	2	-
	$01 h$	Physical outputs	U32	RW	RxPDO	-	0000 0000h to FFFF FFFFh (Initial value: 0000 0000h)	A
	$02 h$	Bit mask	U32	RW	No	-	0000 0000h to FFFF FFFFh (Initial value: 0000 0000h)	A

Details of the physical outputs

Bit	Name	Description
0	Electromagnetic brake control	0: Electromagnetic brake release 1: Electromagnetic brake hold
1 to 31	-	Reserved

Details of the bit mask

Bit	Name	Description
0	Mask of bit0	0: Brake control of physical outputs disable $1:$ Brake control of physical outputs enable
1 to 31	-	Reserved

- Target velocity (60FFh)

Sets the operating speed for the cyclic synchronous velocity mode and the profile velocity mode.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
60FFh	$00 h$	Target velocity $[H z]$	INT32	RW	RxPDO	-	$-4,000,000$ to $4,000,000$ (Initial value: 0$)$	A

- Supported drive modes (6502h)

Indicates the operation mode supported by the product.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
6502 h	00h	Supported drive modes	U32	RO	No	-	000001 A5h	-

Details of range

Bit	Name	Value	Description
0	PP (Profile position mode)	1	1: Supported
1	VL (Velocity mode)	0	0: Not supported
2	PV (Profile velocity mode)	1	1: Supported
3	TQ (Torque profile mode)	0	$0:$ Not supported
4	Reserved	0	Reserved
5	HM (Homing mode)	1	1: Supported
6	IP (Interpolated position mode)	0	0: Not supported
7	CSP (Cyclic synchronous position mode)	1	1: Supported
8	CSV (Cyclic synchronous velocity mode)	1	1: Supported
9	CST (Cyclic synchronous torque mode)	0	0: Not supported
10 to 31	Reserved	0	Reserved

- Device profile number (67FFh)

Indicates the device type and profile number.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
67FFh	00h	Device profile number	U32	RO	No	-	00040192 h	-

Details of range

Bit	Name	Description
0 to 15	Device profile	0192h: DS402
16 to 31	Device type	0004h: Stepping motor

7-4 Objects of the manufacturer-specific area

These are our specific objects.
Refer to the AZ Series OPERATING MANUAL Function Edition for driver objects that are not described in this document.

- Operation voltage mode (40B7h)

Indicates the voltage mode of the actual main power supply. Sets the voltage mode of the main power supply using the "Main power mode (41FAh)."

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
40B7h	00h	Operation voltage mode	U8	RO	No	-	-	-

Details of range

Setting value	Description
0	The main power supply is not turned on. [When the "Main power mode (41FAh)" is set to -1 (automatic discrimination)]
24	Operates in the 24 VDC mode.
48	Operates in the 48 VDC mode.

- Current setting during push-motion (413Ch)

Setting method of the current of push-motion operation is selected.
When "0: Push current" is selected, set with the "Push current (4121h)." Set the current value other than push-motion operation with the "Operating current (4120h)."
When " 1 : Operating current" is selected, set the current value for all operation with the "Operating current (4120h)."

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
$413 C h$	$00 h$	Current setting during push-motion	U8	RW	No	O	0 (initial vlaue), 1	A

Details of range

Setting value	Description
0	Push current
1	Operating current

- Non-excitation mode selection (413Dh)

Selects whether to enable the dynamic brake status or the free-run status when the motor is in a non-excitation state. In the dynamic brake status, the motor windings will be in a state of being short-circuited inside the driver, and the braking torque will generate. In the free-run status, the dynamic brake will be disabled, and the braking torque will not generate.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
413Dh	$00 h$	Non-excitation mode selection	U8	RW	No	\bigcirc	0 (Initial value), 1	A

Details of range

Setting value	Description
0	Dynamic brake status
1	Free-run status

- Wrap positioning mode (414Fh)

Sets the operation mode for wrap positioning operation.
For details about operation mode, refer to "Operation mode of the profile position mode" on p.109.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
414Fh	$00 h$	Wrap positioning mode	U8	RW	RxPDO	\bigcirc	0 (Initial value), 1,2, 3	B

Details of range

Setting value	Description
0	Wrap absolute positioning
1	Wrap proximity
2	Wrap forward direction
3	Wrap reverse direction

- Main power mode (41FAh)

Sets the voltage mode of the main power supply. (DC power input driver only)

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
41FAh	$00 h$	Main power mode	INT8	RW	No	O	-1 (Initial value), 0,1	D

Details of range

Setting value	Description
-1	Automatic discrimination (discriminates the input power supply voltage automatically.)
0	24 VDC mode
1	48 VDC mode

Note - The optimal values in the motor control parameters are set in the driver according to the voltage mode. Unless the voltage mode is set correctly, the torque may decrease or vibration may increase.

- If -1 is set, after the control power supply is supplied, the voltage value is automatically discriminated when the main power supply is turned on first. Be sure to shut off the control power supply before changing the voltage of the main power supply.
- When 48 VDC is used, if the rise time of 50 ms or more is needed while the driver input voltage rises to 32 V from 10 V , set the value to 1 instead of -1 (automatic discrimination). If the rise time is slow, the voltage mode may wrongly be recognized as 24 VDC , resulting in torque deterioration or vibration.
- The voltage mode actually operated can be checked by the "Operation voltage mode (40B7h)."

- Touch probe 1 latch position (44BOh)

Sets the position to latch by the external latch input (EXT1). The changed value is updated when the "Touch probe 1 permission (60B8h: bit0)" is changed from 0 to 1 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
44B0h	00 h	Touch probe 1 latch position	U8	RW	No	O	0 (Initial value), 1	A

Details of range

Setting value	Description
0	Latches the feedback position (actual position).
1	Latches the command position.

- Touch probe 2 latch position (44B1h)

Sets the position to latch by the external latch input (EXT2). The changed value is updated when the "Touch probe 2 permission (60B8h: bit8)" is changed from 0 to 1 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
44B1h	00 h	Touch probe 2 latch position	U8	RW	No	O	0 (Initial value), 1	A

Details of range

Setting value	Description
0	Latches the feedback position (actual position).
1	Latches the command position.

- Touch probe 1 TIM/ZSG signal select (44B2h)

Sets the TIM output or ZSG output as a trigger. The changed value is updated when the "Touch probe 1 permission (60B8h: bit0)" is changed from 0 to 1 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
44B2h	00 h	Touch probe 1 TIM/ZSG signal select	U8	RW	No	O	0 (Initial value), 1	A

Details of range

Setting value	Description
0	Latches by the ZSG output.
1	Latches by the TIM output.

- Touch probe 2 TIM/ZSG signal select (44B3h)

Sets the TIM output or ZSG output as a trigger. The changed value is updated when the "Touch probe 2 permission (60B8h: bit8)" is changed from 0 to 1 .

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
44B3h	00 h	Touch probe 2 TIM/ZSG signal select	U8	RW	No	O	0 (Initial value), 1	A

Details of range

Setting value	Description
0	Latches by the ZSG output.
1	Latches by the TIM output.

- Driver CPU number (4642h)

Indicates the CPU number of the software of the driver.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
4642 h	00h	Driver CPU number	U16	RO	No	-	-	-

- Driver software version (4643h)

Indicates the software version of the driver. 0100h is indicated when the version is 1.00.

Index	Sub	Name	Type	Access	PDO	Save	Range	Update
4643 h	00 h	Driver software version	U16	RO	No	-	-	-

5 Object list

This part describes the lists of the objects supported by the driver.
\bullet Table of contents

1 Objects of the CoE communication area.
 187

2 Objects of the profile area 189
3 Objects of the manufacturer-specific area. 191

Notation rules

- Timing to update

In this part, each update timing is represented in an alphabet.

Notation	Update timing	Description
A	Update immediately	Recalculation and setup are immediately executed when the parameter is written.
B	Update after operation stop	Recalculation and setup are executed when the operation is stopped.
C	Update after executing Configuration	Recalculation and setup are executed after Configuration is executed or executing write batch non-volatile memory and turning on the control power supply again.
D	Update after turning on the control power supply again	Recalculation and setup are executed after executing write batch non-volatile memory and turning on the control power supply again.

1 Objects of the CoE communication area

These are objects to set about EtherCAT communication or to indicate the status.

Index	Sub	Name	Type	Access	PDO	Save	initial value	Range	Update
1000h	00h	Device type	U32	RO	No	-	00040192 h	-	-
1001h	00h	Error register	U8	RO	No	-	0	-	-
1008h	00h	Manufacturer device name	STRING	RO	No	-	AZD-AED, AZD-CED, AZD-KED		-
1009h	00h	Manufacturer hardware version	STRING	RO	No	-	Indicates the version number	-	-
100Ah	00h	Manufacturer software version	STRING	RO	No	-	Indicates the version number	-	-
1018h	Identity object								
	00h	Number of entries	U8	RO	No	-	4	-	-
	01h	Vendor ID	U32	RO	No	-	0000 02BEh	-	-
	02h	Product code	U32	RO	No	-	AZD-AED: 0000 13E9h AZD-CED: 0000 13EAh AZD-KED: 0000 13E5h		-
	03h	Revision number	U32	RO	No	-	0000 xxxxh	-	-
	04h	Serial number	U32	RO	No	-	0	-	-
1600h	Receive PDO mapping 1 (RxPDO1)								
	00h	Number of entries	U8	RW	No	-	3	0 to 16	A
	01h	Mapping entry 1	U32	RW	No	-	6040 0010h	0000 0000h to FFFF FFFFh	A
	02h	Mapping entry 2	U32	RW	No	-	607A 0020h	0000 0000h to FFFF FFFFh	A
	03h	Mapping entry 3	U32	RW	No	-	6060 0008h	0000 0000h to FFFF FFFFh	A
	04h to 10h	Mapping entry 4-16	U32	RW	No	-	0000 0000h	0000 0000h to FFFF FFFFh	A
1601h	Receive PDO mapping 2 (RxPDO2)								
	00h	Number of entries	U8	RW	No	-	5	0 to 16	A
	01h	Mapping entry 1	U32	RW	No	-	6040 0010h	00000000 h to FFFFF FFFFh	A
	02h	Mapping entry 2	U32	RW	No	-	607A 0020h	0000 0000h to FFFF FFFFh	A
	03h	Mapping entry 3	U32	RW	No	-	60FF 0020h	00000000 h to FFFF FFFFh	A
	04h	Mapping entry 4	U32	RW	No	-	60600008 h	00000000 h to FFFFFFFFFh	A
	05h	Mapping entry 5	U32	RW	No	-	60B8 0010h	00000000 h to FFFF FFFFh	A
	06h to 10h	Mapping entry 6-16	U32	RW	No	-	0000 0000h	0000 0000h to FFFF FFFFh	A
1A00h	Transmit PDO mapping 1 (TxPDO1)								
	00h	Number of entries	U8	RW	No	-	3	0 to 16	A
	01h	Mapping entry 1	U32	RW	No	-	6041 0010h	0000 0000h to FFFF FFFFh	A
	02h	Mapping entry 2	U32	RW	No	-	6064 0020h	0000 0000h to FFFF FFFFh	A
	03h	Mapping entry 3	U32	RW	No	-	6061 0008h	00000000 h to FFFF FFFFh	A
	04h to 10h	Mapping entry 4-16	U32	RW	No	-	0000 0000h	0000 0000h to FFFF FFFFh	A
1A01h	Transmit PDO mapping 2 (TxPDO2)								
	00h	Number of entries	U8	RW	No	-	8	0 to 16	A
	01h	Mapping entry 1	U32	RW	No	-	6041 0010h	0000 0000h to FFFFFFFFFh	A
	02h	Mapping entry 2	U32	RW	No	-	6064 0020h	0000 0000h to FFFF FFFFh	A
	03h	Mapping entry 3	U32	RW	No	-	6061 0008h	00000000 h to FFFFFFFFFh	A
	04h	Mapping entry 4	U32	RW	No	-	60B9 0010h	0000 0000h to FFFFFFFFFh	A
	05h	Mapping entry 5	U32	RW	No	-	60BA 0020h	0000 0000h to FFFF FFFFh	A
	06h	Mapping entry 6	U32	RW	No	-	60BC 0020h	0000 0000h to FFFF FFFFh	A
	07h	Mapping entry 7	U32	RW	No	-	603F 0010h	0000 0000h to FFFF FFFFh	A
	08h	Mapping entry 8	U32	RW	No	-	60FD 0020h	0000 0000h to FFFF FFFFh	A
	09h to 10h	Mapping entry 9-16	U32	RW	No	-	00000000 h	0000 0000h to FFFF FFFFh	A

Index	Sub	Name	Type	Access	PDO	Save	initial value	Range	Update
1C00h	Sync manager communication type								
	00h	Number of entries	U8	RO	No	-	4	-	-
	01h	Communication type sync manager 0	U8	RO	No	-	1: Mailbox output (EtherCAT master to driver)		-
	02h	Communication type sync manager 1	U8	RO	No	-	2: Mailbox input (Driver to EtherCAT master)		-
	03h	Communication type sync manager 2	U8	RO	No	-	3: Process data output (EtherCAT master to driver)		-
	04h	Communication type sync manager 3	U8	RO	No	-	4: Process data input (Driver to EtherCAT master)		-
1C12h	Sync manager 2 PDO assignment								
	00h	Number of entries	U8	RW	No	-	1	0, 1	A
	01h	Index of assigned PDO 1	U16	RW	No	-	1600h	0 to FFFFh	A
1C13h	Sync manager 3 PDO assignment								
	00h	Number of entries	U8	RW	No	-	1	0, 1	A
	01h	Index of assigned PDO 1	U16	RW	No	-	1A00h	0 to FFFFh	A
1C32h	Sync manager 2 synchronization								
	00h	Number of entries	U8	RO	No	-	20h	-	-
	01h	Synchronization type	U16	RW	No	-	02h	00h: Free run mode (asynchronous) 01h: Sync manager 2 event synchronization mode 02h: DC mode (SYNC0 event synchronization)	A
	02h	Cycle time [ns]	U32	RO	No	-	-	-	-
	03h	Shift time [ns]	U32	RO	No	-	0	-	-
	04h	Synchronization types supported	U16	RO	No	-	0007h	-	-
	05h	Minimum cycle time [ns]	U32	RO	No	-	0003 D090h (250,000 ns)		-
	06h	Calc and copy time [ns]	U32	RO	No	-	0001 86A0h (100,000 ns)		-
	07h	Reserved	U32	-	-	-	-	-	-
	08h	Reserved	U16	-	-	-	-	-	-
	09h	Delay time [ns]	U32	RO	No	-	0	-	-
	0Ah to 1Fh	Reserved	U16	-	-	-	-	-	-
	20h	Sync error	BOOL	RO	No	-	0	-	-
1C33h	Sync manager 3 synchronization								
	00h	Number of entries	U8	RO	No	-	20h	-	-
	01h	Synchronization type	U16	RW	No	-	02h	00h: Free run mode (asynchronous) 02h: DC mode (SYNCO event synchronization) 22h: Sync manager 2 event synchronization mode	A
	02h	Cycle time [ns]	U32	RO	No	-	-	-	-
	03h	Shift time [ns]	U32	RO	No	-	0	-	-
	04h	Synchronization types supported	U16	RO	No	-	0007h	-	-
	05h	Minimum cycle time [ns]	U32	RO	No	-	0003 D090h (250,000 ns)		-
	06h	Calc and copy time [ns]	U32	RO	No	-	0002 49FOh (150,000 ns)		-
	07h	Reserved	U32	-	-	-	-	-	-
	08h	Reserved	U16	-	-	-	-	-	-
	09h	Delay time [ns]	U32	RO	No	-	0	-	-
	0Ah to 1Fh	Reserved	U16	-	-	-	-	-	-
	20h	Sync error	B0OL	RO	No	-	0	-	-

2 Objects of the profile area

Objects in the profile area are defined by the CiA402 drive profile. Operations of the driver are set, and the status is indicated.

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
603Fh	00h	Error code	U16	RO	TxPDO	-	-	-	-
6040h	00h	Controlword	U16	RW	RxPDO	-	0	0 to FFFFh	A
6041h	00h	Statusword	U16	RO	TxPDO	-	-	-	-
605Ah	00h	Quick stop option code	INT16	RW	No	\bigcirc	2	0, 1, 2, 3, 5, 6, 7	A
605Bh	00h	Shutdown option code	INT16	RW	No	\bigcirc	1	0,1	A
605Ch	00h	Disable operation option code	INT16	RW	No	\bigcirc	1	0,1	A
605Dh	00h	Halt option code	INT16	RW	No	\bigcirc	1	1 to 3	A
6060h	00h	Modes of operation	INT8	RW	RxPDO	\bigcirc	0	0 : Operation function disable 1: Profile position mode (PP) 3: Profile velocity mode (PV) 6: Homing mode (HM) 8: Cyclic synchronous position mode (CSP) 9: Cyclic synchronous velocity mode (CSV)	B
6061h	00h	Modes of operation display	INT8	RO	TxPDO	-	-	-	-
6062h	00h	Position demand value [step]	INT32	RO	TxPDO	-	-	-	-
6064h	00h	Position actual value [step]	INT32	RO	TxPDO	-	-	-	-
6065h	00h	Following error window [$1=0.01 \mathrm{rev}$]	U32	RW	No	\bigcirc	300	1 to 30,000	A
6067h	00h	Position window [1=0.1 ${ }^{\circ}$]	U32	RW	No	\bigcirc	18	0 to 180	A
606Bh	00h	Velocity demand value [Hz]	INT32	RO	TxPDO	-	-	-	-
606Ch	00h	Velocity actual value [Hz]	INT32	RO	TxPDO	-	-	-	-
607Ah	00h	Target position [step]	INT32	RW	RxPDO	-	0	$-2,147,483,648$ to $2,147,483,647$	A
607Ch	00h	Home offset [step]	INT32	RW	No	\bigcirc	0	-2,147,483,648 to 2,147,483,647	A
607Dh	Software position limit								
	00h	Number of entries	U8	RO	No	-	2	-	-
	01h	Min. position limit [step]	INT32	RW	No	\bigcirc	-2,147,483,648	-2,147,483,648 to $2,147,483,647$	A
	02h	Max. position limit [step]	INT32	RW	No	\bigcirc	2,147,483,647	-2,147,483,648 to 2,147,483,647	A
6081h	00h	Profile velocity [Hz]	U32	RW	RxPDO	\bigcirc	10,000	0 to 4,000,000	A
6083h	00h	Profile acceleration [step/s ${ }^{2}$]	U32	RW	RxPDO	\bigcirc	300,000	1 to 1,000,000,000	B
6084h	00h	Profile deceleration [step/s s^{2}]	U32	RW	RxPDO	\bigcirc	300,000	1 to 1,000,000,000	B
6085h	00h	Quick stop deceleration [step/s ${ }^{2}$]	U32	RW	RxPDO	\bigcirc	1,000,000	1 to 1,000,000,000	B
6091h	Gear ratio								
	00h	Number of entries	U8	RO	No	-	2	-	-
	01h	Electronic gear A	U32	RW	No	\bigcirc	1	1 to 65,535	C
	02h	Electronic gear B	U32	RW	No	\bigcirc	1	1 to 65,535	C
6098h	00h	Homing method	INT8	RW	No	\bigcirc	24	-1, 17, 18, 24, 28, 35, 37	B
6099h	Homing speed								
	00h	Number of entries	U8	RO	No	-	2	-	-
	01h	Speed during search for switch [Hz]	U32	RW	No	\bigcirc	10,000	1 to 4,000,000	B
	02h	Speed during search for zero [Hz]	U32	RW	No	\bigcirc	5,000	1 to 10,000	B
609Ah	00h	Homing acceleration [step/s ${ }^{2}$]	U32	RW	No	0	300,000	1 to 1,000,000,000	B
60B8h	00h	Touch probe function	U16	RW	RxPDO	-	0000h	0000h to FFFFh	A
60B9h	00h	Touch probe status	U16	RO	TxPDO	-	-	-	-
60BAh	00h	Touch probe position 1 positive value [step]	INT32	RO	TxPDO	-	-	-	-
60BBh	00h	Touch probe position 1 negative value [step]	INT32	RO	TxPDO	-	-	-	-
60BCh	00h	Touch probe position 2 positive value [step]	INT32	RO	TxPDO	-	-	-	-
60BDh	00h	Touch probe position 2 negative value [step]	INT32	RO	TxPDO	-	-	-	-

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
60E3h	Supported homing methods								
	00h	Number of entries	U8	RO	No	-	6	-	-
	01h	1st supported homing method	U16	RO	No	-	17	-	-
	02h	2nd supported homing method	U16	RO	No	-	18	-	-
	03h	3rd supported homing method	U16	RO	No	-	24	-	-
	04h	4th supported homing method	U16	RO	No	-	28	-	-
	05h	5th supported homing method	U16	RO	No	-	35	-	-
	06h	6th supported homing method	U16	RO	No	-	37	-	-
60F4h	00h	Following error actual value [step]	INT32	RO	TxPDO	-	0	-	-
60FDh	00h	Digital inputs	U32	RO	TxPDO	-	-	-	-
60FEh	Digital outputs								
	00h	Number of entries	U8	RO	No	-	2	-	-
	01h	Physical outputs	U32	RW	RxPDO	-	0000 0000h	0000 0000h to FFFF FFFFh	A
	02h	Bit mask	U32	RW	No	-	0000 0000h	0000 0000h to FFFF FFFFh	A
60FFh	00h	Target velocity [Hz]	INT32	RW	RxPDO	-	0	-4,000,000 to 4,000,000	A
6502h	00h	Supported drive modes	U32	RO	No	-	0000 01A5h	-	-
67FFh	00h	Device profile number	U32	RO	No	-	0004 0192h	-	-

3 Objects of the manufacturer-specific area

These are our specific objects.
Refer to the AZ Series OPERATING MANUAL Function Edition for details of each object.
When checking the AZ Series OPERATING MANUAL Function Edition, use the object name instead of the Index.

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
4020h	00h	Backup DATA access key	INT32	RW	No	-	0	Key code: 20519253 (01391955h)	A
4021h	00h	Backup DATA write key	INT32	RW	No	-	0	Key code: 1977326743 (75DB9C97h)	A
403Eh	00h	Driver input command	U16	RW	RxPDO	-	0	0000h to FFFFh	A
403Fh	00h	Driver output status	U16	RO	TxPDO	-	-	-	-
4040h	00h	Present alarm	U16	RO	TxPDO	-	-		
4041h	00h	Alarm history 1	U16	RO	No	-	-		
4042h	00h	Alarm history 2	U16	RO	No	-	-		
4043h	00h	Alarm history 3	U16	RO	No	-	-		
4044h	00h	Alarm history 4	U16	RO	No	-	-		
4045h	00h	Alarm history 5	U16	RO	No	-	-		
4046h	00h	Alarm history 6	U16	RO	No	-	-		
4047h	00h	Alarm history 7	U16	RO	No	-	-		
4048h	00h	Alarm history 8	U16	RO	No	-	-		
4049h	00h	Alarm history 9	U16	RO	No	-	-		
404Ah	00h	Alarm history 10	U16	RO	No	-	-		
4064h	00h	Command speed [r/min]	INT32	RO	TxPDO	-	-		
4067h	00h	Feedback speed [r/min]	INT32	RO	TxPDO	-	-		
406Ah	00h	Direct I/O	U32	RO	TxPDO	-	-		
406Bh	00h	Torque monitor [1=0.1 \%]	INT16	RO	TxPDO	-	-		
406Dh	00h	Cumulative load monitor	INT32	RO	TxPDO	-	-		
407Bh	00h	Information	INT32	RO	TxPDO	-	-		
407Ch	00h	Driver temperature [$1=0.1^{\circ} \mathrm{C}$]	INT16	RO	TxPDO	-	-		
407Dh	00h	Motor temperature [$1=0.1^{\circ} \mathrm{C}$]	INT16	RO	TxPDO	-	-		
407Eh	00h	Odometer [1=0.1 kRev]	INT32	RO	TxPDO	-	-		
407Fh	00h	Tripmeter [1=0.1 kRev]	INT32	RO	TxPDO	-	-		
4090h	00h	Feedback position 32-bit counter	INT32	RO	TxPDO	-	-		
4091h	00h	Command position 32-bit counter	INT32	RO	TxPDO	-	-		
4092h	00h	CST operating current [1=0.1 \%]	INT16	RO	TxPDO	-	-		
40A0h	00h	Main power supply count	INT32	RO	TxPDO	-	-		
40A1h	00h	Main power supply time [min]	INT32	RO	TxPDO	-	-		
40A2h	00h	Control power supply count	INT32	RO	TxPDO	-	-		
40A3h	00h	Inverter voltage [1=0.1 V]	INT16	RO	TxPDO	-	-		
40A4h	00h	Main power voltage [$1=0.1 \mathrm{~V}$]	INT16	RO	TxPDO	-	-		
40A9h	00h	Elapsed time from BOOT [ms]	INT32	RO	TxPDO	-	-		
40B7h	00h	Operation voltage mode [V]	U8	RO	TxPDO	-	-		
40B8h	00h	I/O status 1	U32	RO	TxPDO	-	-		
40B9h	00h	I/O status 2	U32	RO	TxPDO	-	-		
40BAh	00h	1/O status 3	U32	RO	TxPDO	-	-		
40BBh	00h	I/O status 4	U32	RO	TxPDO	-	-		
40BCh	00h	I/O status 5	U32	RO	TxPDO	-	-		
40BDh	00h	I/O status 6	U32	RO	TxPDO	-	-		
40BEh	00h	1/O status 7	U32	RO	TxPDO	-	-		
40BFh	00h	I/O status 8	U32	RO	TxPDO	-	-		

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
40COh	00h	Alarm reset	U8	RW	No	-	0	0 : Not executed. 1: A command is executed when the data changes from 0 to 1 . 2: A command is executed. It will automatically return to 1 after executing.	-
40C2h	00h	Clear alarm history	U8	RW	No	-	0		
40C5h	00h	P-PRESET execution	U8	RW	No	-	0		
40C6h	00h	Configuration	U8	RW	No	-	0		
40C8h	00h	Read batch NV memory	U8	RW	No	-	0		
40C9h	00h	Write batch NV memory	U8	RW	No	-	0		
40CAh	00h	All data initialization	U8	RW	No	-	0		
40CBh	00h	Read from backup	U8	RW	No	-	0		
40CCh	00h	Write to backup	U8	RW	No	-	0		
40 CDh	00h	Clear latch information	U8	RW	No	-	0		
40CFh	00h	Clear tripmeter	U8	RW	No	-	0		
40D0h	00h	Execute ETO-CLR input	U8	RW	No	-	0		
40D1h	00h	ZSG-PRESET	U8	RW	No	-	0		
40D2h	00h	Clear ZSG-PRESET	U8	RW	No	-	0		
40D3h	00h	Clear information	U8	RW	No	-	0		
40D4h	00h	Clear information history	U8	RW	No	-	0		
4120h	00h	Operating current	INT16	RW	RxPDO	\bigcirc	1,000	0 to 1,000 (1=0.1 \%)	A*
4121h	00h	Push current	INT16	RW	RxPDO	\bigcirc	200	0 to 1,000 (1=0.1 \%)	A*
4126h	00h	Base current	INT16	RW	RxPDO	\bigcirc	1,000	0 to 1,000 (1=0.1 \%)	A*
4128h	00h	Stop current	INT16	RW	RxPDO	\bigcirc	500	0 to 1,000 (1=0.1 \%)	A*
4129h	00h	Command filter setting	INT8	RW	No	\bigcirc	1	1: LPF (speed filter) 2: Moving average filter	B
412Ah	00h	Command filter time constant	INT16	RW	RxPDO	\bigcirc	1	0 to 200 ms	B
412Ch	00h	Smooth drive function	U8	RW	No	0	1	$\begin{array}{\|l} \hline 0: \text { Disable } \\ \text { 1: Enable } \\ \hline \end{array}$	C
412Dh	00h	Current control mode	U8	RW	No	\bigcirc	0	```0 : The setting of the CCM input is followed 1: a control mode (CST) 2: Servo emulation mode (SVE)```	A
412Eh	00h	Servo emulation (SVE) ratio	INT16	RW	No	\bigcirc	1,000	0 to 1,000 (1=0.1 \%)	A
412Fh	00h	SVE position loop gain	INT16	RW	No	0	10	1 to 50	A
4130h	00h	SVE speed loop gain	INT16	RW	No	\bigcirc	180	10 to 200	A
4131h	00h	SVE speed loop integral time constant	INT16	RW	No	0	1,000	100 to 2,000 ($1=0.1 \mathrm{~ms}$)	A
4132h	00h	Automatic current cutback function	U8	RW	No	\bigcirc	1	$\begin{array}{\|l} \hline \text { 0: Disable } \\ \text { 1: Enable } \\ \hline \end{array}$	A
4133h	00h	Automatic current cutback switching time	INT16	RW	No	\bigcirc	100	0 to $1,000 \mathrm{~ms}$	A
4134h	00h	Operating current ramp up rate	U8	RW	No	\bigcirc	0	0 to $100(\mathrm{~ms} / 100 \%)$	A
4135h	00h	Operating current ramp down rate	U8	RW	No	\bigcirc	0	0 to 100 (ms/100\%)	A
4136h	00h	Electronic damper function	INT8	RW	No	O	1	$\begin{aligned} & \text { 0: Disable } \\ & \text { 1: Enable } \end{aligned}$	A
4137h	00h	Resonance suppression control frequency	INT16	RW	No	\bigcirc	1,000	100 to $2,000 \mathrm{~Hz}$	A
4138h	00h	Resonance suppression control gain	INT16	RW	No	\bigcirc	0	-500 to 500	A
4139h	00h	Deviation acceleration suppressing gain	INT16	RW	No	\bigcirc	45	0 to 500	A
413Ch	00h	Current setting during push-motion	U8	RW	No	0	0	0: Push current 1: Operating current	A
413Dh	00h	Non-excitation mode selection	U8	RW	No	\bigcirc	0	0 : Dynamic brake status 1: Free-run status	A
4142h	00h	Starting speed	INT32	RW	No	\bigcirc	5,000	0 to $4,000,000 \mathrm{~Hz}$	B
4148h	00h	Permission of absolute positioning without setting absolute coordinates	U8	RW	No	\bigcirc	0	0 : Disable 1: Enable	B
414Fh	00h	Wrap positioning mode	U8	RW	RxPDO	\bigcirc	0	0: Wrap absolute positioning 1: Wrap proximity 2: Wrap forward direction 3: Wrap reverse direction	B
4151h	00h	(JOG) Operating speed	INT32	RW	No	\bigcirc	10,000	1 to $4,000,000 \mathrm{~Hz}$	B
4152h	00h	(JOG) Acceleration/deceleration	INT32	RW	No	\bigcirc	300,000	1 to $1,000,000,000 \mathrm{kHz} / \mathrm{s}$	B

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
4153h	00h	(JOG) Starting speed	INT32	RW	No	\bigcirc	5,000	0 to 4,000,000 Hz	B
4154h	00h	(JOG) Operating speed (high)	INT32	RW	No	\bigcirc	50,000	1 to $4,000,000 \mathrm{~Hz}$	B
4158h	00h	(ZHOME) Operating speed	INT32	RW	No	\bigcirc	50,000	1 to 4,000,000 Hz	B
4159h	00h	(ZHOME) Acceleration/deceleration	INT32	RW	No	\bigcirc	300,000	1 to $1,000,000,000 \mathrm{kHz} / \mathrm{s}$	B
415Ah	00h	(ZHOME) Starting speed	INT32	RW	No	\bigcirc	5,000	0 to $4,000,000 \mathrm{~Hz}$	B
415Eh	00h	JOG/HOME/ZHOME command filter time constant	INT16	RW	No	\bigcirc	1	1 to 200 ms	B
415Fh	00h	JOG/HOME/ZHOME operating current	INT16	RW	No	\bigcirc	1,000	0 to 1,000 (1=0.1 \%)	B
4160h	00h	(HOME) Home-seeking mode	U8	RW	No	0	1	0: 2-sensor 1:3-sensor 2: One-way rotation 3: Push-motion	B
4161h	00h	(HOME) Starting direction	U8	RW	No	0	1	0 : Negative side 1: Positive side	B
4163h	00h	(HOME) Starting speed	INT32	RW	No	\bigcirc	5,000	1 to $4,000,000 \mathrm{~Hz}$	B
4166h	00h	(HOME) SLIT detection	U8	RW	No	\bigcirc	0	0: Disable 1: Enable	B
4167h	00h	(HOME) TIM/ZSG signal detection	U8	RW	No	\bigcirc	0	0: Disable 1:TIM 2: ZSG	B
4168h	00h	(HOME) Position offset	INT32	RW	No	\bigcirc	0	$\begin{array}{\|l\|} \hline-2,147,483,647 \text { to } \\ 2,147,483,647 \text { steps } \end{array}$	B
4169h	00h	(HOME) Backward steps in 2 sensor home-seeking	INT32	RW	No	\bigcirc	5,000	0 to 8,388,607 steps	B
416Ah	00h	(HOME) Operating amount in uni-directional home-seeking	INT32	RW	No	0	5,000	0 to 8,388,607 steps	B
416Bh	00h	(HOME) Operating current for push-home-seeking	INT16	RW	No	\bigcirc	1,000	0 to 1,000 (1=0.1 \%)	B
416Ch	00h	(HOME) Backward steps after first entry in push-home-seeking	INT32	RW	No	\bigcirc	0	0 to 8,388,607 steps	B
416Dh	00h	(HOME) Pushing time in push-home-seeking	U16	RW	No	\bigcirc	200	1 to 65,535 ms	B
416Eh	00h	(HOME) Backward steps in push-home-seeking	INT32	RW	No	0	5,000	0 to 8,388,607 steps	B
4180h	00h	Overload alarm	INT16	RW	No	\bigcirc	50	1 to 300 ($1=0.1 \mathrm{~s}$)	A
4190h	00h	HWTO mode selection	U8	RW	No	\bigcirc	0	0 : Alarm is not present 1: Alarm is present	A
4191h	00h	HWTO delay time of checking dual system	U8	RW	No	\bigcirc	0	0 to 10 (disable), 11 to 100 ms	A
4198h	00h	ETO reset ineffective period	U8	RW	No	\bigcirc	0	0 to 100 ms	A
4199h	00h	ETO reset action (ETO-CLR)	U8	RW	No	\bigcirc	1	1: Activate at ON edge 2: Activate at ON level	A
419Ah	00h	ETO reset action (ALM-RST)	U8	RW	No	0	0	0: Disable 1: Activate at ON edge	A
419Ch	00h	ETO reset action (STOP)	U8	RW	No	\bigcirc	1	0: Disable 1: Activate at ON edge	A
41A0h	00h	Driver temperature information (INFO-DRVTMP)	INT16	RW	RxPDO	\bigcirc	85	40 to $85^{\circ} \mathrm{C}$	A
41A1h	00h	Overload time information (INFO-OLTIME)	INT16	RW	RxPDO	\bigcirc	50	1 to 300 ($1=0.1$ s)	A
41A2h	00h	Overspeed information (INFO-SPD)	INT16	RW	RxPDO	\bigcirc	0	0 : Disable 1 to $12,000 \mathrm{r} / \mathrm{min}$	A
41A5h	00h	Position deviation information (INFO-POSERR)	INT16	RW	RxPDO	\bigcirc	300	1 to 30,000 ($1=0.01 \mathrm{rev}$)	A
41A8h	00h	Motor temperature information (INFO-MTRTMP)	INT16	RW	RxPDO	0	85	40 to $120^{\circ} \mathrm{C}$	A
41A9h	00h	Overvoltage information (INFO-OVOLT) [AC power input type driver]	INT16	RW	RxPDO	\bigcirc	435	120 to 450 V	A
41AAh	00h	Undervoltage information (INFO-UVOLT) [AC power input type driver]	INT16	RW	RxPDO	\bigcirc	120	120 to 280 V	A

	Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
	41ABh	00h	Overvoltage information (INFO-OVOLT) [DC power input type driver]	INT16	RW	RxPDO	0	630	150 to 630 ($1=0.1 \mathrm{~V}$)	A
	41ACh	00h	Undervoltage information (INFO-UVOLT) [DC power input type driver]	INT16	RW	RxPDO	0	180	150 to 630 ($1=0.1 \mathrm{~V}$)	A
	41AFh	00h	Tripmeter information (INFO-TRIP)	INT32	RW	RxPDO	\bigcirc	0	0: Disable 1 to $2,147,483,647$ ($1=0.1 \mathrm{kRev}$)	A
	41B0h	00h	Odometer information (INFO-ODO)	INT32	RW	RxPDO	0	0	0 : Disable 1 to $2,147,483,647$ ($1=0.1 \mathrm{kRev}$)	A
	41B1h	00h	Cumulative load 0 information (INFO-CULDO)	INT32	RW	RxPDO	\bigcirc	0	0 to 2,147,483,647	A
	41B2h	00h	Cumulative load 1 information (INFO-CULD1)	INT32	RW	RxPDO	0	0	0 to 2,147,483,647	A
	41B3h	00h	Cumulative load value auto clear	U8	RW	No	\bigcirc	1	0 : Disable 1: Enable	A
	41B4h	00h	Cumulative load value count divisor	U16	RW	No	\bigcirc	1	1 to 32,767	A
	41BCh	00h	INFO-USRIO output selection	U8	RW	No	\bigcirc	128	Output signals list \Rightarrow p. 147	A
	41BDh	00h	INFO-USRIO output inversion	U8	RW	No	0	0	0 : Not invert 1: Invert	A
	41BEh	00h	Information LED condition	U8	RW	No	\bigcirc	1	0 : Disable (LED does not blink) 1: Enable (LED blinks)	A
	41BFh	00h	Information auto clear	U8	RW	No	\bigcirc	1	```0: Disable (not turned OFF automatically) 1: Enable (turned OFF automatically)```	A
	41C2h	00h	Motor rotation direction	U8	RW	No	\bigcirc	1	0 : Positive side=Counterclockwise 1: Positive side=Clockwise 2: Positive side=Counterclockwise (the driver parameter is applied) 3: Positive side=Clockwise (the driver parameter is applied)	C
$\begin{aligned} & \text { u } \\ & \frac{O}{0} \\ & \stackrel{\rightharpoonup}{D} \end{aligned}$	41C3h	00h	Software overtravel	INT8	RW	No	0	3	-1: Disable 0 : Immediate stop 1: Deceleration stop 2: Immediate stop with alarm 3: Deceleration stop with alarm	A
$\overline{\bar{\sim}}$	41C6h	00h	Preset position	INT32	RW	No	\bigcirc	0	$\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \text { steps } \end{aligned}$	A
	41C7h	00h	Wrap setting	U8	RW	No	\bigcirc	1	0 : Disable 1: Enable	C
	41C9h	00h	Initial coordinate generation \& wrap setting range	INT32	RW	No	\bigcirc	10	5 to 655,360 (1=0.1 rev)	C
	41CBh	00h	Initial coordinate generation \& wrap range offset ratio	U16	RW	No	\bigcirc	5,000	0 to 10,000 ($1=0.01$ \%)	C
	41CCh	00h	Initial coordinate generation \& wrap range offset value	INT32	RW	No	0	0	$-536,870,912$ to $536,870,911$ steps	C
	41CDh	00h	The number of the RND-ZERO output in wrap range	INT32	RW	No	\bigcirc	1	1 to 536,870,911	C
	41FOh	00h	PULSE-I/F mode selection	INT8	RW	No	\bigcirc	1	-1: Disable 1:2 pulse input mode 2: 1 pulse input mode 3: Phase-shifted pulses input mode ($\times 1$) 4: Phase-shifted pulses input mode ($\times 2$) 5: Phase-shifted pulses input mode (×4)	D
	41FAh	00h	Main power mode	INT8	RW	No	\bigcirc	-1	-1: Automatic discrimination 0: 24 VDC 1:48 VDC	D
	41FFh	00h	Drive simulation mode	U8	RW	No	\bigcirc	0	0: Use real motor 1: Virtual motor (when ABZO not connected=no ABZO information) 2: Virtual motor (when ABZO not connected $=1,800$ rev wrap enable) 3: Virtual motor (when ABZO not connected=900 rev wrap enable)	D

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
44B0h	00h	Touch probe 1 latch position	U8	RW	No	\bigcirc	0	0 : Latches the feedback position 1: Latches the command position	A
44B1h	00h	Touch probe 2 latch position	U8	RW	No	\bigcirc	0		
44B2h	00h	Touch probe 1 TIM/ZSG signal select	U8	RW	No	\bigcirc	0	0 : Latch on the ZSG output 1: Latch on the TIM output	A
44B3h	00h	Touch probe 2 TIM/ZSG signal select	U8	RW	No	\bigcirc	0		
4510h	00h	Information history 1	INT32	RO	No	-	-	-	-
4511h	00h	Information history 2	INT32	RO	No	-	-		
4512h	00h	Information history 3	INT32	RO	No	-	-		
4513h	00h	Information history 4	INT32	RO	No	-	-		
4514h	00h	Information history 5	INT32	RO	No	-	-		
4515h	00h	Information history 6	INT32	RO	No	-	-		
4516h	00h	Information history 7	INT32	RO	No	-	-		
4517h	00h	Information history 8	INT32	RO	No	-	-		
4518h	00h	Information history 9	INT32	RO	No	-	-		
4519h	00h	Information history 10	INT32	RO	No	-	-		
451Ah	00h	Information history 11	INT32	RO	No	-	-		
451Bh	00h	Information history 12	INT32	RO	No	-	-		
451Ch	00h	Information history 13	INT32	RO	No	-	-		
451Dh	00h	Information history 14	INT32	RO	No	-	-		
451Eh	00h	Information history 15	INT32	RO	No	-	-		
451Fh	00h	Information history 16	INT32	RO	No	-	-		
4520h	00h	Information time history 1	INT32	RO	No	-	-	-	-
4521h	00h	Information time history 2	INT32	RO	No	-	-		
4522h	00h	Information time history 3	INT32	RO	No	-	-		
4523h	00h	Information time history 4	INT32	RO	No	-	-		
4524h	00h	Information time history 5	INT32	RO	No	-	-		
4525h	00h	Information time history 6	INT32	RO	No	-	-		
4526h	00h	Information time history 7	INT32	RO	No	-	-		
4527h	00h	Information time history 8	INT32	RO	No	-	-		
4528h	00h	Information time history 9	INT32	RO	No	-	-		
4529h	00h	Information time history 10	INT32	RO	No	-	-		
452Ah	00h	Information time history 11	INT32	RO	No	-	-		
452Bh	00h	Information time history 12	INT32	RO	No	-	-		
452Ch	00h	Information time history 13	INT32	RO	No	-	-		
452Dh	00h	Information time history 14	INT32	RO	No	-	-		
452Eh	00h	Information time history 15	INT32	RO	No	-	-		
452Fh	00h	Information time history 16	INT32	RO	No	-	-		
4642h	00h	Driver CPU number	U16	RO	No	-	-	-	-
4643h	00h	Driver software version	U16	RO	No	-	-	-	-
4700h	00h	STOP input action	INT8	RW	No	\bigcirc	3	0: Immediate stop 3: Deceleration stop	A
4701h	00h	FW-LS/RV-LS input action	INT8	RW	No	0	2	-1 : Used as a return-to-home sensor 0: Immediate stop 1: Deceleration stop 2: Immediate stop with alarm 3: Deceleration stop with alarm	A
4702h	00h	FW-BLK/RV-BLK input action	INT8	RW	No	\bigcirc	0	0: Immediate stop 1: Deceleration stop	A
4704h	00h	IN-POS positioning completion signal offset	INT16	RW	No	0	0	-18 to 18 ($1=0.1^{\circ}$)	A
4707h	00h	ZSG signal width	U16	RW	No	\bigcirc	18	1 to 1,800 ($1=0.1^{\circ}$)	A
4708h	00h	RND-ZERO signal width	U16	RW	No	\bigcirc	10	1 to 10,000 steps	A
4709h	00h	RND-ZERO signal source	U8	RW	No	\bigcirc	0	0: Based on feedback position 1: Based on command position	A
470Ah	00h	MOVE minimum ON time	U8	RW	No	\bigcirc	0	0 to 255 ms	A
470Ch	00h	PLS-XMODE pulse multiplying factor	INT8	RW	No	\bigcirc	10	2 to 30 times	A
470Dh	00h	CRNT-LMT operating current limit value	INT16	RW	No	\bigcirc	500	0 to 1,000 (1=0.1 \%)	A

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
470Eh	00h	SPD-LMT speed limit type selection	INT8	RW	No	\bigcirc	0	0: Ratio 1: Value	A
470Fh	00h	SPD-LMT speed limit ratio	INT8	RW	No	\bigcirc	50	1 to 100\%	A
4710h	00h	SPD-LMT speed limit value	INT32	RW	No	\bigcirc	10,000	1 to $4,000,000 \mathrm{~Hz}$	A
4713h	00h	PLS-LOST check algorithm	U8	RW	No	\bigcirc	0	0 : Unsigned 1: Signed	A
4718h	00h	VA mode selection	U8	RW	No	0	2	0: Feedback speed attainment (speed at feedback position) 1: Speed at command position (only internal profile) 2: Speed at feedback position \& command position (only internal profile)	A
4719h	00h	VA detection speed range	U8	RW	No	\bigcirc	30	1 to $200 \mathrm{r} / \mathrm{min}$	B
4740h	00h	AREAO positive direction position/ offset	INT32	RW	No	\bigcirc	0	$\begin{aligned} & -2,147,483,648 \text { to } \\ & 2,147,483,647 \text { steps } \end{aligned}$	A
4741h	00h	AREAO negative direction position/ detection range	INT32	RW	No	0	0		
4742h	00h	AREA1 positive direction position/ offset	INT32	RW	No	\bigcirc	0		
4743h	00h	AREA1 negative direction position/ detection range	INT32	RW	No	\bigcirc	0		
4744h	00h	AREA2 positive direction position/ offset	INT32	RW	No	\bigcirc	0		
4745h	00h	AREA2 negative direction position/ detection range	INT32	RW	No	\bigcirc	0		
4746h	00h	AREA3 positive direction position/ offset	INT32	RW	No	0	0		
4747h	00h	AREA3 negative direction position/ detection range	INT32	RW	No	\bigcirc	0		
4748h	00h	AREA4 positive direction position/ offset	INT32	RW	No	\bigcirc	0		
4749h	00h	AREA4 negative direction position/ detection range	INT32	RW	No	0	0		
474Ah	00h	AREA5 positive direction position/ offset	INT32	RW	No	\bigcirc	0		
474Bh	00h	AREA5 negative direction position/ detection range	INT32	RW	No	0	0		
474Ch	00h	AREA6 positive direction position/ offset	INT32	RW	No	\bigcirc	0		
474Dh	00h	AREA6 negative direction position/ detection range	INT32	RW	No	\bigcirc	0		
474Eh	00h	AREA7 positive direction position/ offset	INT32	RW	No	\bigcirc	0		
474Fh	00h	AREA7 negative direction position/ detection range	INT32	RW	No	0	0		
4750h	00h	AREAO range setting mode	U8	RW	No	\bigcirc	0	0 : Absolute pos 1: Offset/width setting from the target position	A
4751h	00h	AREA1 range setting mode	U8	RW	No	\bigcirc	0		
4752h	00h	AREA2 range setting mode	U8	RW	No	\bigcirc	0		
4753h	00h	AREA3 range setting mode	U8	RW	No	\bigcirc	0		
4754h	00h	AREA4 range setting mode	U8	RW	No	\bigcirc	0		
4755h	00h	AREA5 range setting mode	U8	RW	No	\bigcirc	0		
4756h	00h	AREA6 range setting mode	U8	RW	No	\bigcirc	0		
4757h	00h	AREA7 range setting mode	U8	RW	No	\bigcirc	0		
4758h	00h	AREA0 positioning standard	U8	RW	No	\bigcirc	0	0 : Based on feedback position 1: Based on command position	A
4759h	00h	AREA1 positioning standard	U8	RW	No	\bigcirc	0		
475Ah	00h	AREA2 positioning standard	U8	RW	No	\bigcirc	0		
475Bh	00h	AREA3 positioning standard	U8	RW	No	\bigcirc	0		
475Ch	00h	AREA4 positioning standard	U8	RW	No	\bigcirc	0		
475Dh	00h	AREA5 positioning standard	U8	RW	No	\bigcirc	0		
475Eh	00h	AREA6 positioning standard	U8	RW	No	\bigcirc	0		
475Fh	00h	AREA7 positioning standard	U8	RW	No	\bigcirc	0		

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	
47A0h	$00 h$	INFO action (Assigned I/O status information (INFO-USRIO))	U8	RW	No	0	1	Update	
47A1h	$00 h$	INFO action (Position deviation information (INFO-POSERR))	U8	RW	No	0	1	1	N

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
4840h	00h	DINO input function	U8	RW	No	\bigcirc	30	Input signal list \Rightarrow p. 146	C
4841h	00h	DIN1 input function	U8	RW	No	\bigcirc	1		
4842h	00h	DIN2 input function	U8	RW	No	\bigcirc	12		
4843h	00h	DIN3 input function	U8	RW	No	\bigcirc	104		
4844h	00h	DIN4 input function	U8	RW	No	\bigcirc	28		
4845h	00h	DIN5 input function	U8	RW	No	\bigcirc	29		
4850h	00h	DINO inverting mode	U8	RW	No	\bigcirc	0	0 : Non invert 1: Invert	C
4851h	00h	DIN1 inverting mode	U8	RW	No	\bigcirc	0		
4852h	00h	DIN2 inverting mode	U8	RW	No	\bigcirc	0		
4853h	00h	DIN3 inverting mode	U8	RW	No	\bigcirc	0		
4854h	00h	DIN4 inverting mode	U8	RW	No	0	0		
4855h	00h	DIN5 inverting mode	U8	RW	No	\bigcirc	0		
4860h	00h	DOUTO (Normal) output function	U8	RW	No	0	144	Output signal list \Rightarrow p. 147	C
4861h	00h	DOUT1 (Normal) output function	U8	RW	No	\bigcirc	137		
4862h	00h	DOUT2 (Normal) output function	U8	RW	No	\bigcirc	133		
4863h	00h	DOUT3 (Normal) output function	U8	RW	No	\bigcirc	142		
4864h	00h	DOUT4 (Normal) output function	U8	RW	No	\bigcirc	134		
4865h	00h	DOUT5 (Normal) output function	U8	RW	No	\bigcirc	130		
4870h	00h	DOUTO inverting mode	U8	RW	No	\bigcirc	0	0 : Non invert 1: Invert	C
4871h	00h	DOUT1 inverting mode	U8	RW	No	\bigcirc	0		
4872h	00h	DOUT2 inverting mode	U8	RW	No	\bigcirc	0		
4873h	00h	DOUT3 inverting mode	U8	RW	No	\bigcirc	0		
4874h	00h	DOUT4 inverting mode	U8	RW	No	\bigcirc	0		
4875h	00h	DOUT5 inverting mode	U8	RW	No	\bigcirc	0		
4880h	00h	DINO composite input function	U8	RW	No	\bigcirc	0	Input signal list \Rightarrow p. 146	C
4881h	00h	DIN1 composite input function	U8	RW	No	\bigcirc	0		
4882h	00h	DIN2 composite input function	U8	RW	No	\bigcirc	0		
4883h	00h	DIN3 composite input function	U8	RW	No	\bigcirc	0		
4884h	00h	DIN4 composite input function	U8	RW	No	\bigcirc	0		
4885h	00h	DIN5 composite input function	U8	RW	No	\bigcirc	0		
4890h	00h	DOUTO composite output function	U8	RW	No	\bigcirc	128	Output signal list \Rightarrow p. 147	C
4891h	00h	DOUT1 composite output function	U8	RW	No	\bigcirc	128		
4892h	00h	DOUT2 composite output function	U8	RW	No	\bigcirc	128		
4893h	00h	DOUT3 composite output function	U8	RW	No	\bigcirc	128		
4894h	00h	DOUT4 composite output function	U8	RW	No	0	128		
4895h	00h	DOUT5 composite output function	U8	RW	No	\bigcirc	128		
48A0h	00h	DOUTO composite inverting mode	U8	RW	No	\bigcirc	0	0 : Non invert 1: Invert	C
48A1h	00h	DOUT1 composite inverting mode	U8	RW	No	\bigcirc	0		
48A2h	00h	DOUT2 composite inverting mode	U8	RW	No	\bigcirc	0		
48A3h	00h	DOUT3 composite inverting mode	U8	RW	No	\bigcirc	0		
48A4h	00h	DOUT4 composite inverting mode	U8	RW	No	0	0		
48A5h	00h	DOUT5 composite inverting mode	U8	RW	No	\bigcirc	0		
48B0h	00h	DOUTO composite logical combination	U8	RW	No	\bigcirc	1	$\begin{aligned} & \text { 0: AND } \\ & \text { 1: OR } \end{aligned}$	C
48B1h	00h	DOUT1 composite logical combination	U8	RW	No	\bigcirc	1		
48B2h	00h	DOUT2 composite logical combination	U8	RW	No	0	1		
48B3h	00h	DOUT3 composite logical combination	U8	RW	No	\bigcirc	1		
48B4h	00h	DOUT4 composite logical combination	U8	RW	No	0	1		
48B5h	00h	DOUT5 composite logical combination	U8	RW	No	\bigcirc	1		
48COh	00h	DINO ON signal dead-time	U8	RW	No	\bigcirc	0	0 to 250 ms	C
48C1h	00h	DIN1 ON signal dead-time	U8	RW	No	\bigcirc	0		
48C2h	00h	DIN2 ON signal dead-time	U8	RW	No	\bigcirc	0		
48C3h	00h	DIN3 ON signal dead-time	U8	RW	No	\bigcirc	0		

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
48C4h	00h	DIN4 ON signal dead-time	U8	RW	No	\bigcirc	0	0 to 250 ms	C
48C5h	00h	DIN5 ON signal dead-time	U8	RW	No	\bigcirc	0		
48DOh	00h	DINO 1 shot signal	U8	RW	No	\bigcirc	0	0 : Disable 1: Enable	C
48D1h	00h	DIN1 1 shot signal	U8	RW	No	\bigcirc	0		
48D2h	00h	DIN2 1 shot signal	U8	RW	No	\bigcirc	0		
48D3h	00h	DIN3 1 shot signal	U8	RW	No	\bigcirc	0		
48D4h	00h	DIN4 1 shot signal	U8	RW	No	\bigcirc	0		
48D5h	00h	DIN5 1 shot signal	U8	RW	No	\bigcirc	0		
48EOh	00h	DOUTO OFF delay time	U8	RW	No	\bigcirc	0	0 to 250 ms	C
48E1h	00h	DOUT1 OFF delay time	U8	RW	No	\bigcirc	0		
48E2h	00h	DOUT2 OFF delay time	U8	RW	No	\bigcirc	0		
48E3h	00h	DOUT3 OFF delay time	U8	RW	No	\bigcirc	0		
48E4h	00h	DOUT4 OFF delay time	U8	RW	No	\bigcirc	0		
48E5h	00h	DOUT5 OFF delay time	U8	RW	No	\bigcirc	0		
4900h	00h	R-INO input function	U8	RW	No	\bigcirc	0	Input signal list \Rightarrow p. 146	C
4901h	00h	R-IN1 input function	U8	RW	No	\bigcirc	0		
4902h	00h	R-IN2 input function	U8	RW	No	\bigcirc	0		
4903h	00h	R-IN3 input function	U8	RW	No	\bigcirc	0		
4904h	00h	R-IN4 input function	U8	RW	No	\bigcirc	0		
4905h	00h	R-IN5 input function	U8	RW	No	\bigcirc	0		
4906h	00h	R-IN6 input function	U8	RW	No	\bigcirc	0		
4907h	00h	R-IN7 input function	U8	RW	No	\bigcirc	0		
4908h	00h	R-IN8 input function	U8	RW	No	\bigcirc	0		
4909h	00h	R-IN9 input function	U8	RW	No	\bigcirc	0		
490Ah	00h	R-IN10 input function	U8	RW	No	\bigcirc	0		
490Bh	00h	R-IN11 input function	U8	RW	No	\bigcirc	0		
490Ch	00h	R-IN12 input function	U8	RW	No	\bigcirc	0		
490Dh	00h	R-IN13 input function	U8	RW	No	\bigcirc	0		
490Eh	00h	R-IN14 input function	U8	RW	No	\bigcirc	0		
490Fh	00h	R-IN15 input function	U8	RW	No	\bigcirc	0		
4910h	00h	R-OUTO output function	U8	RW	No	\bigcirc	28	Output signal list \Rightarrow p. 147	C
4911h	00h	R-OUT1 output function	U8	RW	No	\bigcirc	29		
4912h	00h	R-OUT2 output function	U8	RW	No	\bigcirc	155		
4913h	00h	R-OUT3 output function	U8	RW	No	\bigcirc	0		
4914h	00h	R-OUT4 output function	U8	RW	No	\bigcirc	144		
4915h	00h	R-OUT5 output function	U8	RW	No	\bigcirc	204		
4916h	00h	R-OUT6 output function	U8	RW	No	\bigcirc	135		
4917h	00h	R-OUT7 output function	U8	RW	No	\bigcirc	129		
4918h	00h	R-OUT8 output function	U8	RW	No	\bigcirc	136		
4919h	00h	R-OUT9 output function	U8	RW	No	\bigcirc	160		
491Ah	00h	R-OUT10 output function	U8	RW	No	\bigcirc	161		
491Bh	00h	R-OUT11 output function	U8	RW	No	\bigcirc	162		
491Ch	00h	R-OUT12 output function	U8	RW	No	\bigcirc	157		
491Dh	00h	R-OUT13 output function	U8	RW	No	\bigcirc	134		
491Eh	00h	R-OUT14 output function	U8	RW	No	\bigcirc	138		
491Fh	00h	R-OUT15 output function	U8	RW	No	\bigcirc	140		
4930h	00h	R-OUTO OFF delay time	U8	RW	No	\bigcirc	0	0 to 250 ms	C
4931h	00h	R-OUT1 OFF delay time	U8	RW	No	\bigcirc	0		
4932h	00h	R-OUT2 OFF delay time	U8	RW	No	\bigcirc	0		
4933h	00h	R-OUT3 OFF delay time	U8	RW	No	\bigcirc	0		
4934h	00h	R-OUT4 OFF delay time	U8	RW	No	\bigcirc	0		
4935h	00h	R-OUT5 OFF delay time	U8	RW	No	\bigcirc	0		
4936h	00h	R-OUT6 OFF delay time	U8	RW	No	\bigcirc	0		
4937h	00h	R-OUT7 OFF delay time	U8	RW	No	\bigcirc	0		
4938h	00h	R-OUT8 OFF delay time	U8	RW	No	\bigcirc	0		
4939h	00h	R-OUT9 OFF delay time	U8	RW	No	\bigcirc	0		

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
493Ah	00h	R-OUT10 OFF delay time	U8	RW	No	\bigcirc	0	0 to 250 ms	C
493Bh	00h	R-OUT11 OFF delay time	U8	RW	No	\bigcirc	0		
493Ch	00h	R-OUT12 OFF delay time	U8	RW	No	\bigcirc	0		
493Dh	00h	R-OUT13 OFF delay time	U8	RW	No	\bigcirc	0		
493Eh	00h	R-OUT14 OFF delay time	U8	RW	No	\bigcirc	0		
493Fh	00h	R-OUT15 OFF delay time	U8	RW	No	\bigcirc	0		
4940h	00h	Virtual input (VIR-INO) function	U8	RW	No	\bigcirc	0	Input signal list \Rightarrow p. 146	C
4941h	00h	Virtual input (VIR-IN1) function	U8	RW	No	\bigcirc	0		
4942h	00h	Virtual input (VIR-IN2) function	U8	RW	No	\bigcirc	0		
4943h	00h	Virtual input (VIR-IN3) function	U8	RW	No	\bigcirc	0		
4944h	00h	Virtual input (VIR-INO) source selection	U8	RW	No	\bigcirc	128	Output signal list \Rightarrow p. 147	C
4945h	00h	Virtual input (VIR-IN1) source selection	U8	RW	No	\bigcirc	128		
4946h	00h	Virtual input (VIR-IN2) source selection	U8	RW	No	\bigcirc	128		
4947h	00h	Virtual input (VIR-IN3) source selection	U8	RW	No	\bigcirc	128		
4948h	00h	Virtual input (VIR-INO) inverting mode	U8	RW	No	\bigcirc	0	0 : Non invert 1: Invert	C
4949h	00h	Virtual input (VIR-IN1) inverting mode	U8	RW	No	\bigcirc	0		
494Ah	00h	Virtual input (VIR-IN2) inverting mode	U8	RW	No	\bigcirc	0		
494Bh	00h	Virtual input (VIR-IN3) inverting mode	U8	RW	No	\bigcirc	0		
494Ch	00h	Virtual input (VIR-INO) ON signal dead time [ms]	U8	RW	No	\bigcirc	0	0 to 250 ms	C
494Dh	00h	Virtual input (VIR-IN1) ON signal dead time [ms]	U8	RW	No	\bigcirc	0		
494Eh	00h	Virtual input (VIR-IN2) ON signal dead time [ms]	U8	RW	No	\bigcirc	0		
494Fh	00h	Virtual input (VIR-IN3) ON signal dead time [ms]	U8	RW	No	\bigcirc	0		
4950h	00h	Virtual input (VIR-INO) 1 shot signal mode	U8	RW	No	\bigcirc	0	0: Disable 1: Enable	C
4951h	00h	Virtual input (VIR-IN1) 1 shot signal mode	U8	RW	No	\bigcirc	0		
4952h	00h	Virtual input (VIR-IN2) 1 shot signal mode	U8	RW	No	\bigcirc	0		
4953h	00h	Virtual input (VIR-IN3) 1 shot signal mode	U8	RW	No	\bigcirc	0		
4960h	00h	User output (USR-OUTO) source A function	U8	RW	No	\bigcirc	128	Output signal list \Rightarrow p. 147	C
4961h	00h	User output (USR-OUT1) source A function	U8	RW	No	\bigcirc	128		
4962h	00h	User output (USR-OUTO) source A inverting mode	U8	RW	No	\bigcirc	0	0 : Non invert 1: Invert	C
4963h	00h	User output (USR-OUT1) source A inverting mode	U8	RW	No	\bigcirc	0		
4964h	00h	User output (USR-OUTO) source B function	U8	RW	No	\bigcirc	128	Output signal list \Rightarrow p. 147	C
4965h	00h	User output (USR-OUT1) source B function	U8	RW	No	\bigcirc	128		
4966h	00h	User output (USR-OUTO) source B inverting mode	U8	RW	No	\bigcirc	0	0 : Non invert 1: Invert	C
4967h	00h	User output (USR-OUT1) source B inverting mode	U8	RW	No	0	0		
4968h	00h	User output (USR-OUTO) logical operation	U8	RW	No	\bigcirc	1	$\begin{aligned} & \text { 0: AND } \\ & \text { 1: OR } \end{aligned}$	C
4969h	00h	User output (USR-OUT1) logical operation	U8	RW	No	\bigcirc	1		
4970h	00h	Extended input (EXT-IN) function	U8	RW	No	\bigcirc	9	Input signal list \Rightarrow p. 146	c

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
4971h	00h	Extended input (EXT-IN) inverting mode	U8	RW	No	\bigcirc	0	0: Non invert 1: Invert	C
4972h	00h	Extended input (EXT-IN) interlock releasing time	INT8	RW	No	\bigcirc	10	0: Disable 1 to 50 ($1=0.1 \mathrm{~s}$)	A
4973h	00h	Extended input (EXT-IN) interlock releasing duration	INT8	RW	No	\bigcirc	30	0 to 50 ($1=0.1 \mathrm{~s}$)	A
4974h	00h	Extended input (EXT-IN) ON monitor time	INT8	RW	No	\bigcirc	10	0 to 50 ($1=0.1 \mathrm{~s}$)	A
49FAh	00h	Current setting during motor standstill at T-MODE	INT32	RW	No	\bigcirc	0	0: Stop current 1: Operating current	A

* With the profile position mode, it will be update at start of operation.

Reference picture of ON signal dead-time [ms]

- Reference picture of OFF output-delay time [ms]

Table of contents

1 Alarms... 204
1-1 Alarm reset.. 204
1-2 Alarm history.. 204
1-3 Generation condition of alarms 204
1-4 Alarm list... 205
1-5 Timing chart ... 211
2 Information.. 213
2-1 Information history 215
2-2 Information list.. 215
3 Troubleshooting and $\begin{aligned} & \text { remedial actions } 219\end{aligned}$

1 Alarms

This driver has the alarm function to protect from temperature rise, poor connection, error in operation, and others. If an alarm is generated, the ALM-A output is turned ON and the ALM-B output is turned OFF to stop the motor. At the same time, the PWR/ALM LED blinks in red.
Details of the alarm being generated can be checked by counting the number of times the PWR/ALM LED blinks, or using EtherCAT communication or the MEXEO2.

1-1 Alarm reset

Before resetting an alarm, always remove the cause of the alarm and ensure safety, and perform one of the reset operations specified next.

- Set the "Fault reset ($6040 \mathrm{~h}:$ bit7)" of the controlword to 1 . (The alarm will be reset when changing from " 0 " to " 1. .)
- Turn the ALM-RST input ON. (The alarm will be reset at the ON edge of the input.)
- Execute the alarm reset using the MEXEO2.
- Turn on the control power supply again.

Note - Some alarms cannot be reset by other methods than turning on the control power supply again. Check with "1-4 Alarm list" on p.205.

- An alarm of the absolute position error can be reset if the position preset (P-PRESET) or return-tohome operation is performed. If it cannot be reset by these methods, the ABZO sensor may be damaged.

1-2 Alarm history

Up to 10 generated alarms are saved in the non-volatile memory in order of the latest to oldest. The alarm history stored in the non-volatile memory can be read or cleared if one of the following is performed.

- Read the alarm history by the "Alarm history (4041 h to 404 Ah)" via EtherCAT communication.
- Clear the history by setting the "Clear alarm history (40C2h)" of EtherCAT communication to 1. (It is enabled when changing from 0 to 1.)
- Read and clear the alarm history using the MEXEO2.

1-3 Generation condition of alarms

Alarms shown in the table will be generated if the generation condition is exceeded.

Alarm code	Alarm name	Motor model	Generation condition	
			$A C$ power input driver	DC power input driver
21h	Main circuit overheat [${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$]	-	85 (185)	85 (185)
22h	Overvoltage (V)	-	430	63
26h	Motor overheat [${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$]	-	85 (185)	85 (185)
31h	Overspeed (r/min)	AZM14 AZM15 AZM24 AZM26	-	8,000
		$\begin{aligned} & \text { AZM46 } \\ & \text { AZM48 } \\ & \text { AZM66 } \end{aligned}$	8,000	4,500
		AZM69	8,000	2,500
		$\begin{gathered} \text { AZM98 } \\ \text { AZM911 } \end{gathered}$	5,000	-
34h	Command pulse error (r/min)	-	38,400	38,400

1-4 Alarm list

Note If an alarm is generated, the motor will put into a non-excitation state.

Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset
10h	4	Excessive position deviation	- When the motor was in a state of current ON, the deviation between the command position and actual position exceeded the value set in the "Following error window (6065h)" in the motor shaft. - A load is large, or the acceleration/deceleration time or the acceleration/ deceleration rate is too short against the load. - The operating range of positioning push-motion operation was exceeded.	- Decrease the load. - Increase the acceleration/ deceleration time or slow the acceleration/deceleration rate. - Increase the operating current. - Reconsider the operation data.	Any of reset operations
20h	5	Overcurrent	The motor, the cable, and the driver output circuit were shortcircuited.	Turn off the main power supply and the control power supply first, and check the motor, the cable, and the driver are not damaged. After that, turn on the main power supply and the control power supply again. If the alarm is still not reset, the motor, the cable, or the driver may be damaged. Contact your nearest Oriental Motor sales office.	Turn on the control power supply again
21h	2	Main circuit overheat	The internal temperature of the driver reached the upper limit of the specification value.	Reconsider the ventilation condition.	Any of reset operations
22h	3	Overvoltage (AC power input driver)	- The main power supply voltage exceeded the permissible value. - A large load inertia was suddenly stopped. - Vertical operation (elevating operation) was performed.	- Check the input voltage of the main power supply. - Decrease the load. - Increase the acceleration/ deceleration time or slow the acceleration/deceleration rate. - Connect our regeneration resistor RGB100.	Turn on the control power supply again
22h	3	Overvoltage (DC power input driver)	- The main power supply voltage exceeded the permissible value. - A large load inertia was suddenly stopped. - Vertical operation (elevating operation) was performed.	- Check the input voltage of the main power supply. - Decrease the load. - Increase the acceleration/ deceleration time or slow the acceleration/deceleration rate.	Any of reset operations
23h	3	Main power supply OFF	The main power supply was shut off during operation.	Check if the main power supply is applied properly.	Any of reset operations

反u!̣oousə|qnoıı9

Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset
25h	3	Undervoltage	The main power supply was shut off momentarily or a voltage shortage was generated.	Check the input voltage of the main power supply.	Any of reset operations
26h	8	Motor overheat	The detection temperature of the ABZO sensor reached the upper limit of the specification value.	- Check the heat radiation condition of the motor. - Reconsider the ventilation condition.	Any of reset operations
28h	8	Sensor error	An error of the sensor was detected during operation.	Turn off the main power supply and the control power supply, and check the connection of the motor. After that, turn on the main power supply and the control power supply again.	Turn on the control power supply again
2Ah	8	ABZO sensor communication error	An error occurred between the driver and the ABZO sensor.	Turn off the main power supply and the control power supply, and check the connection of the ABZO sensor. After that, turn on the main power supply and the control power supply again.	Turn on the control power supply again
30h	2	Overload	A load exceeding the maximum torque was applied for the time exceeding the value set in the "Overload alarm (4180h)."	- Decrease the load. - Increase the acceleration/ deceleration time or slow the acceleration/deceleration rate. - Increase the operating current.	Any of reset operations
31h	2	Overspeed	The feedback speed of the motor output shaft exceeded the specification value.	- Reconsider the "Electronic gear (6091h-01h, 02h)" and set the speed of the motor output shaft to a value lower than the specification value. - If an overshoot is occurred at the time of accelerating, increase the acceleration time or slow the acceleration rate.	Any of reset operations
33h	7	Absolute position error	The home information of the ABZO sensor was damaged.	Perform the position preset (P-PRESET) or return-to-home operation to set the home again.	Turn on the control power supply again
34h	2	Command pulse error	-The command pulse frequency exceeded the specification value. - The position preset (P-PRESET) of the driver was executed in the cyclic synchronous position mode when the motor was in an excitation state.	- Decrease the frequency of the command pulse. - Put the motor into a nonexcitation state before executing the position preset (P-PRESET) of the driver in the cyclic synchronous position mode.	Any of reset operations
41h	9	EEPROM error	The data stored in the driver was damaged.	Initialize all parameters.	Turn on the control power supply again

Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset
42h	8	Sensor error at power on	An error of the ABZO sensor was detected when the control power supply was turned on.	Turn off the main power supply and the control power supply, and check the connection of the ABZO sensor. After that, turn on the main power supply and the control power supply again.	Turn on the control power supply again
43h	8	Rotation error at power on	The motor was being rotated when the control power supply was turned on.	Reconsider the load conditions so that the motor output shaft does not rotate by an external force when the control power supply is turned on.	Turn on the control power supply again
44h	8	Encoder EEPROM error	The data stored in the ABZO sensor was damaged.	Execute either of the following operations. If the same alarm is still generated, the ABZO sensor has been damaged. Contact your nearest Oriental Motor sales office. - Set Z-phase again with the "ZSG-PRESET (40D1h)" of the maintenance command. - Execute the "Clear tripmeter (40CFh)" of the maintenance command.	Turn on the control power supply again
45h	8	Motor combination error	A motor not allowed to combine with the driver was connected. Refer to p. 210 for details.	Check the motor model and the driver model, and connect them in the correct combination.	Turn on the control power supply again
4Ah	7	Return-to-home incomplete	Absolute positioning operation was started in a state where the position coordinate had not been set.	- Reconsider the setting of the "Permission of absolute positioning without setting absolute coordinates (4148h)." - Execute the position preset (P-PRESET) or return-to-home operation.	Any of reset operations
4Ch	7	Network initialization error	An error was detected during initialization of the EtherCAT module.	Turn on the control power supply again. If the alarm is still not reset, contact your nearest Oriental Motor sales office.	Turn on the control power supply again
51h	2	Regeneration resistor overheat (AC power input driver only)	- The regeneration resistor RGB100 is not connected properly. - The regeneration resistor RGB100 was overheated extraordinarily.	- If the regeneration resistor RGB100 is not used, short the TH1 and TH2 terminals of the CN1. - Connect the regeneration resistor RGB100 properly. -The allowable regenerative power of the regeneration resistor RGB100 is exceeded. Reconsider the load and operating conditions.	Turn on the control power supply again

| Alarm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| code | | Number
 oftimes
 LED
 blinks |
| :---: |

| Alarm |
| :--- | :--- | :--- | :--- | :--- | :--- |
| code | | Number
 of times
 LED
 blinks |
| :---: |

	Alarm code	Number of times LED blinks	Alarm type	Cause	Remedial action	How to reset
	70h	7	Operation data error	- Operation was performed at the operating speed or operating current exceeding the value set in the "Mechanism protection parameter." - Wrap operation was executed when "Wrap setting (41C7h)" was disabled. - Push-motion operation or push-motion return-to-home operation was performed with the DGII Series.	- Check the operation data. - Check the value set in the "Mechanism protection parameter" using the unit information monitor of the MEXEO2. - Check the setting of the wrap setting. - Push-motion operation as well as push-motion return-to-home operation cannot be performed with the DGII Series.	Any of reset operations
	71h	7	Electronic gear setting error	The resolution set in the "Electronic gear (6091h-01h, 02h)" was out of the specification.	Reconsider the "Electronic gear (6091h-01h, 02h)," and set so that the resolution should be in the range of the specification.	Turn on the control power supply again
	72h	7	Wrap setting error	The control power supply was turned on with the value set in the "Wrap setting (41C7h)" that is inconsistent with the resolution set in the "Electronic gear (6091h-01h, 02h)."	Set the wrap setting properly, and turn on the control power supply again.	Turn on the control power supply again
の	81h	7	Network bus error	- A communication error of EtherCAT communication was detected during operation. - The EtherCAT communication state machine (ESM) was moved to other than "Operational" during operation.	Check the conditions of the connector, cable, and the EtherCAT master of EtherCAT communication.	Any of reset operations
$\frac{1}{\sigma}$ $\frac{0}{0}$ $\frac{1}{2}$ 0 0	82h	7	Network module error	An error was detected in the network module.	Turn on the control power supply again.	Turn on the control power supply again
อ	F0h	Lit	CPU error	CPU malfunctioned.	Turn on the control power supply again.	Turn on the control power supply again

Related objects

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
4180 h	00 h	Overload alarm	INT16	RW	No	\bigcirc	50	1 to $300(1=0.1 \mathrm{~s})$	A
6065 h	00 h	Following error window	U32	RW	No	\bigcirc	300	1 to $30,000(1=0.01 \mathrm{rev})$	A

- About causes of the motor combination error (alarm code 45h)

An alarm of the motor combination error is generated in the following conditions.

- When the motor for a DC power supply was connected to the AC power input driver.
- When the motor for an AC power supply was connected to the DC power input driver.
- When the motor of frame size 20 mm (0.79 in .) or 28 mm (1.10 in .) was connected to the $D C$ power input driver and 48 VDC was applied.

1-5 Timing chart

1. If an error occurs, the ALM-B output, the MOVE output, and the DCMD-RDY output (PLS-RDY output in pulse-input operation) are turned OFF.
At the same time, the motor stops immediately and the motor excitation is cut off.
2. Check the following before resetting the alarm. The motor may suddenly start running, leading to injury or damage to equipment.

- When operating via EtherCAT communication

Execute the operation stop from the EtherCAT master. In the cyclic synchronous position mode (CSP), clear the position deviation between the EtherCAT master and the driver after the operation is stopped.

- In pulse-input operation

Stop the pulse input.
3. Remove the cause of the alarm and then turn the ALM-RST input ON.

The alarm is reset, and the ALM-B output is turned ON. If the excitation command is input from the EtherCAT master, the motor puts into an excitation state at the same time as the alarm is reset, and the READY output and the DCMD-RDY output (PLS-RDY output in pulse-input operation) are turned ON.
4. Check the ALM-B output has been turned ON and then turn the ALM-RST input OFF.

* It is the movement when the excitation command is input from the EtherCAT master while the ALM-RST input is turned ON.

* It is the movement when the excitation command is input from the EtherCAT master while the ALM-RST input is turned ON.

2 Information

The driver is equipped with a function to generate information output before an alarm is generated.
This function can be utilized for periodic maintenance of equipment by setting a suitable value in the parameter of each information.
For example, utilizing the "Motor temperature information (41A8h)" can prevent equipment malfunction or production stoppage due to motor overheat. In addition, the "Tripmeter information (41AFh)" can be utilized as a reference to do maintenances every time a certain travel distance is reached.

- Status when information is generated

- Information bit output

If information is generated, a bit output (INFO-** output) of the corresponding information is turned ON. A desired output signal can be assigned to the INFO-USRIO output among bit outputs and used. If the assigned output signal is turned ON, the INFO-USRIO output is also turned ON. For details about bit output, refer to p.215.

- INFO output

If information is generated, the INFO output is turned ON.

- LED indicator

If information is generated, the PWR/ALM LED will simultaneously blink in red and green twice. (Red and green colors may overlap and it may be visible to orange.)

- Motor operation

The motor continues to operate during information unlike in the case of an alarm.

- Parameter

Each information has a corresponding "INFO action" parameter. If the parameter is set to " 0 : No Info reflect," only the bit output of information is turned ON, and the INFO output and LED are not changed.

Related objects

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
41A0h	00h	Driver temperature information (INFO-DRVTMP)	INT16	RW	RxPDO	\bigcirc	40 to $85^{\circ} \mathrm{C}$	85	A
41A1h	00h	Overload time information (INFO-OLTIME)	INT16	RW	RxPDO	\bigcirc	1 to 300 ($1=0.1 \mathrm{~s}$)	50	A
41A2h	00h	Overspeed information (INFO-SPD)	INT16	RW	RxPDO	\bigcirc	$\begin{aligned} & 0 \text { : Disable } \\ & 1 \text { to } 12,000 \mathrm{r} / \mathrm{min} \end{aligned}$	0	A
41A5h	00h	Position deviation information (INFO-POSERR)	INT16	RW	RxPDO	\bigcirc	1 to 30,000 ($1=0.01 \mathrm{rev}$)	300	A
41A8h	00h	Motor temperature information (INFO-MTRTMP)	INT16	RW	RxPDO	\bigcirc	40 to $120^{\circ} \mathrm{C}$	85	A
41A9h	00h	Overvoltage information (INFO-OVOLT) [AC power input driver]	INT16	RW	RxPDO	\bigcirc	120 to 450 V	435	A
41AAh	00h	Undervoltage information (INFO-UVOLT) [AC power input driver]	INT16	RW	RxPDO	\bigcirc	120 to 280 V	120	A
41ABh	00h	Overvoltage information (INFO-OVOLT) [DC power input driver]	INT16	RW	RxPDO	\bigcirc	150 to 630 (1=0.1 V)	630	A
41ACh	00h	Undervoltage information (INFO-UVOLT) [DC power input driver]	INT16	RW	RxPDO	\bigcirc	150 to 630 (1=0.1 V)	180	A
41AFh	00h	Tripmeter information (INFO-TRIP)	INT32	RW	RxPDO	\bigcirc	$\begin{aligned} & 0 \text { : Disable } \\ & 1 \text { to } 2,147,483,647(1=0.1 \mathrm{kRev}) \end{aligned}$	0	A
41B0h	00h	Odometer information (INFO-ODO)	INT32	RW	RxPDO	\bigcirc	$\begin{aligned} & \text { 0: Disable } \\ & 1 \text { to } 2,147,483,647(1=0.1 \mathrm{kRev}) \end{aligned}$	0	A
41B1h	00h	Cumulative load 0 information (INFO-CULDO)	INT32	RW	RxPDO	\bigcirc	0 to 2,147,483,647	0	A
41B2h	00h	Cumulative load 1 information (INFO-CULD1)	INT32	RW	RxPDO	\bigcirc	0 to 2,147,483,647	0	A
41B3h	00h	Cumulative load value auto clear	U8	RW	No	\bigcirc	0: Disable 1: Enable	1	A
41B4h	00h	Cumulative load value count divisor	U16	RW	No	\bigcirc	1 to 32,767	1	A
41BCh	00h	INFO-USRIO output selection	U8	RW	No	\bigcirc	Output signals list \Rightarrow p. 147	128	A

бu!łooysəqno»ュ9

Index	Sub	Name	Type	Access	PDO	Save	Initial value	Range	Update
41BDh	00h	INFO-USRIO output inversion	U8	RW	No	0	0: Not invert 1: Invert	0	A
41BEh	00h	Information LED condition	U8	RW	No	0	0: Disable (LED does not blink) 1: Enable (LED blinks)	1	A
41BFh	00h	Information auto clear	U8	RW	No	0	0: Disable (not turned OFF automatically) 1: Enable (turned OFF automatically)	1	A
47A0h	00h	INFO action (Assigned I/O status information (INFO-USRIO))	U8	RW	No	0	0 : No Info reflect (Only the bit output is ON.) 1: Info reflect (The bit output and the INFO output are ON and the LED blinks.)	1	A
47A1h	00h	INFO action (Position deviation information (INFO-POSERR))	U8	RW	No	\bigcirc			A
47A2h	00h	INFO action (Driver temperature information (INFO-DRVTMP))	U8	RW	No	0			A
47A3h	00h	INFO action (Motor temperature information (INFO-MTRTMP))	U8	RW	No	\bigcirc			A
47A4h	00h	INFO action (Overvoltage information (INFO-OVOLT))	U8	RW	No	0			A
47A5h	00h	INFO action (Undervoltage information (INFO-UVOLT))	U8	RW	No	\bigcirc			A
47A6h	00h	INFO action (Overload time information (INFO-OLTIME))	U8	RW	No	\bigcirc			A
47A8h	00h	INFO action (Speed information (INFO-SPD))	U8	RW	No	\bigcirc			A
47A9h	00h	INFO action (Start operation error information (INFO-START))	U8	RW	No	\bigcirc			A
47AAh	00h	INFO action (Start ZHOME error information (INFO-ZHOME))	U8	RW	No	\bigcirc			A
47ABh	00h	INFO action (PRESET request information (INFO-PR-REQ))	U8	RW	No	0			A
47ADh	00h	INFO action (Electronic gear setting error information (INFO-EGR-E))	U8	RW	No	\bigcirc			A
47AEh	00h	INFO action (Wrap setting error information (INFO-RND-E))	U8	RW	No	\bigcirc			A
47B0h	00h	INFO action (Forward operation prohibiton information (INFO-FW-OT))	U8	RW	No	\bigcirc			A
47B1h	00h	INFO action (Reverse operation prohibiton information (INFO-RV-OT))	U8	RW	No	\bigcirc			A
47B2h	00h	INFO action (Cumulative load 0 information (INFO-CULDO))	U8	RW	No	\bigcirc			A
47B3h	00h	INFO action (Cumulative load 1 information (INFO-CULD1))	U8	RW	No	0			A
47B4h	00h	INFO action (Tripmeter information (INFO-TRIP))	U8	RW	No	\bigcirc			A
47B5h	00h	INFO action (Odometer information (INFO-ODO))	U8	RW	No	0			A
47BCh	00h	INFO action (Start operation restricted mode information (INFO-DSLMTD))	U8	RW	No	\bigcirc			A
47BDh	00h	INFO action (I/O test mode information (INFO-IOTEST))	U8	RW	No	0			A
47BEh	00h	INFO action (Configuration request information (INFO-CFG))	U8	RW	No	\bigcirc			A
47BFh	00h	INFO action (Reboot request information (INFO-RBT))	U8	RW	No	\bigcirc			A

2-1 Information history

Up to 16 generated information items are saved in the RAM in order of the latest to oldest. Information items stored as the information history are the information code, generation time, and contents of information. The information history can be read or cleared when one of the following items is performed.

- Read the information history by the "Information history (4510 h to 451Fh)" via EtherCAT communication.
- Clear the history by setting the "Clear information history (40D4h)" of EtherCAT communication to 1. (The information will be clear when changing from " 0 " to " 1 .")
- Read and clear the information history using the MEXE02.
memo Information history is saved in the RAM, so they are cleared when the control power supply of the driver is turned OFF.

2-2 Information list

Information item	Information bit output signal	Cause	Reset condition
Assigned I/O status	INFO-USRIO	The I/O signal set in the "INFO-USRIO output selection (41BCh)" was turned ON.	The I/O signal set in the "INFOUSRIO output selection (41BCh)" was turned OFF.
Position deviation	INFO-POSERR	The deviation between the command position and the actual position exceeded the value set in the "Position deviation information (41A5h)" in the motor output shaft.	The deviation between the command position and the actual position fell below the value set in the "Position deviation information (41A5h)" in the motor output shaft.
Driver temperature	INFO-DRVTMP	The internal temperature of the driver exceeded the value set in the "Driver temperature information (41AOh)."	The internal temperature of the driver fell below the setting value of the "Driver temperature information (41A0h)."
Motor temperature	INFO-MTRTMP	The detection temperature of the encoder exceeded the value set in the "Motor temperature information (41A8h)."	The detection temperature of the encoder fell about $5{ }^{\circ} \mathrm{C}\left(9^{\circ} \mathrm{F}\right)$ below the value set in the "Motor temperature information (41A8h)."
Overvoltage	INFO-OVOLT	- The voltage of the main power supply exceeded the value set in the "Overvoltage information (41A9h or 41ABh)." - A large load inertia was suddenly stopped. - Vertical operation (elevating operation) was performed.	The voltage of the main power supply fell below the value set in the "Overvoltage information (41A9h or 41ABh)."
Undervoltage	INFO-UVOLT	- The voltage of the main power supply fell below the value set in the "Undervoltage information (41AAh or 41ACh)." - The main power supply was shut off momentarily or a voltage shortage was generated.	The voltage of the main power supply exceeded the value set in the "Undervoltage information (41AAh or 41ACh)."
Overload time	INFO-OLTIME	A load exceeding the maximum torque was applied for a time period exceeding the value set in the "Overload time information (41A1h)."	The overload counter fell below the value set in the "Overload time information (41A1h)."
Speed	INFO-SPD	The feedback speed of the motor exceeded the value set in the "Overspeed information (41A2h)."	The feedback speed of the motor fell below the value set in the "Overspeed information(41A2h)."

Information item	Information bit output signal	Cause	Reset condition
Operation start error	INFO-START	- An operation in the direction being stopped by the FW-BLK input or the RV-BLK input was started. - An operation in the direction being stopped by the FW-LS input or the RV-LS input was started. - An operation in the direction being stopped by the software limit was started. - When operation could not be executed (e.g., the READY output was OFF), the operation start signal was turned ON.	Operation was started normally.
ZHOME start error	INFO-ZHOME	When the position coordinate was not set (the ABSPEN output was OFF), the high-speed return-to-home operation was started.	Operation was started normally.
Preset request	INFO-PR-REQ	Preset was executed by the position preset (P-PRESET) or return-to-home operation.	Preset was complete.
Electronic gear setting error	INFO-EGR-E	The resolution set in the "Electronic gear ($6091 \mathrm{~h}-01 \mathrm{~h}, 02 \mathrm{~h}$)"was out of the specification.	The resolution was set in the range of the specification.
Wrap setting error	INFO-RND-E	The resolution and the "Initial coordinate generation \& wrap setting range (41C9h)" were inconsistent.	The "Initial coordinate generation \& wrap setting range (41C9h)" was set in the range of the specification.
Forward operation prohibition	INFO-FW-OT	- The positive software limit was exceeded. - Either the FW-LS input or the FW-BLK input was turned ON.	The position coordinate of the motor was in the range of the positive software limit, and in addition, both the FW-LS input and the FW-BLK input were turned OFF.
Reverse operation prohibition	INFO-RV-OT	- The negative software limit was exceeded. - Either the RV-LS input or the RV-BLK input was turned ON.	The position coordinate of the motor was in the range of the negative software limit, and in addition, both the RV-LS input and the RV-BLK input were turned OFF.
Cumulative load 0	INFO-CULD0	The cumulative load exceeded the value set in the "Cumulative load 0 information (41B1h)."	The cumulative load fell below the value set in the "Cumulative load 0 information (41B1h)."
Cumulative load 1	INFO-CULD1	The cumulative load exceeded the value set in the "Cumulative load 1 information (41B2h)."	The cumulative load fell below the value set in the "Cumulative load 1 information (41B2h)."
Tripmeter	INFO-TRIP	The travel distance of the motor exceeded the value set in the "Tripmeter information (41AFh)"	After one of the following operation was performed, the travel distance (tripmeter) of the motor fell below the value set in the "Tripmeter information (41AFh)." - The "Tripmeter information (41AFh)" was set again. - The "Clear tripmeter (40CFh)" of the maintenance command was executed.
Odometer	INFO-ODO	The cumulative travel distance of the motor exceeded the value set in the "Odometer information (41BOh)."	After the following operation was performed, the cumulative travel distance (odometer) of the motor fell below the value set in the "Odometer information (41B0h)." - The "Odometer information (41B0h)" was set again.

Information item	Information bit output signal	Cause	Reset condition
Operation start restricted mode	INFO-DSLMTD	- Configuration was executed. - "Remote operation" was executed using the MEXEO2. - Data was written to the driver from the MEXEO2. - "Restored to the factory setting" was executed with the MEXEO2.	- Configuration was complete. - Remote operation was canceled. - Writing data was complete. - Data was restored to the factory setting.
I/O test mode	INFO-IOTEST	- Configuration was executed. - "I/O test" was executed with the MEXEO2.	- Configuration was complete. - The I/O test mode was canceled.
Configuration request	INFO-CFG	Execution of configuration was requested.	Configuration was executed.
Reboot request	INFO-RBT	Reboot was requested.	Reboot was executed.

memo
If the "Preset request" information was generated for 100 ms or more in a state where the "Information auto clear (41BFh)" was set to disable, the preset may have been failed. There are the following two possible reasons that the preset was failed.

- The ABZO sensor is not connected to the driver.
- The preset was executed in a state where the position deviation between the command position and the actual position was 1.8° or more.

Monitor of information

Information in details can be checked by the "Information (407Bh)."
The read information code is indicated in eight hexadecimal digits. It can also be read in 32 bits.
If multiple information items are generated, the logical sum (OR) of the information code is indicated.

Information code	32 bits indication	Information name	Output signal
00000001h	0000000000000000 0000000000000001	Assigned I/O status	INFO-USRIO
00000002h	$\begin{aligned} & 0000000000000000 \\ & 0000000000000010 \end{aligned}$	Position deviation	INFO-POSERR
00000004h	$\begin{aligned} & 0000000000000000 \\ & 0000000000000100 \end{aligned}$	Driver temperature	INFO-DRVTMP
00000008h	$\begin{aligned} & 0000000000000000 \\ & 0000000000001000 \end{aligned}$	Motor temperature	INFO-MTRTMP
00000010h	$\begin{aligned} & 0000000000000000 \\ & 0000000000010000 \end{aligned}$	Overvoltage	INFO-OVOLT
00000020h	$\begin{aligned} & 0000000000000000 \\ & 0000000000100000 \end{aligned}$	Undervoltage	INFO-UVOLT
00000040h	$\begin{aligned} & 0000000000000000 \\ & 0000000001000000 \end{aligned}$	Overload time	INFO-OLTIME
00000100h	$\begin{aligned} & 0000000000000000 \\ & 0000000100000000 \end{aligned}$	Speed	INFO-SPD
00000200h	$\begin{aligned} & 0000000000000000 \\ & 0000001000000000 \end{aligned}$	Operation start error	INFO-START
00000400h	$\begin{aligned} & 0000000000000000 \\ & 0000010000000000 \end{aligned}$	ZHOME start error	INFO-ZHOME
00000800h	$\begin{aligned} & 0000000000000000 \\ & 0000100000000000 \end{aligned}$	Preset request	INFO-PR-REQ
00002000h	$\begin{aligned} & 0000000000000000 \\ & 0010000000000000 \end{aligned}$	Electronic gear setting error	INFO-EGR-E
00004000h	$\begin{aligned} & 0000000000000000 \\ & 0100000000000000 \end{aligned}$	Wrap setting error	INFO-RND-E
00010000h	$\begin{aligned} & 0000000000000001 \\ & 0000000000000000 \end{aligned}$	Forward operation prohibition	INFO-FW-OT
00020000h	$\begin{aligned} & 0000000000000010 \\ & 0000000000000000 \end{aligned}$	Reverse operation prohibition	INFO-RV-OT
00040000h	$\begin{aligned} & 0000000000000100 \\ & 0000000000000000 \end{aligned}$	Cumulative load 0	INFO-CULD0
00080000h	$\begin{aligned} & 0000000000001000 \\ & 0000000000000000 \end{aligned}$	Cumulative load 1	INFO-CULD1
00100000h	$\begin{aligned} & 0000000000010000 \\ & 0000000000000000 \end{aligned}$	Tripmeter	INFO-TRIP
00200000h	$\begin{aligned} & 0000000000100000 \\ & 0000000000000000 \\ & \hline \end{aligned}$	Odometer	INFO-ODO
10000000h	$\begin{aligned} & 0001000000000000 \\ & 0000000000000000 \end{aligned}$	Operation start restricted mode	INFO-DSLMTD
20000000h	$\begin{aligned} & 0010000000000000 \\ & 0000000000000000 \end{aligned}$	I/O test mode	INFO-IOTEST
40000000h	$\begin{aligned} & 0100000000000000 \\ & 0000000000000000 \end{aligned}$	Configuration request	INFO-CFG
80000000h	$\begin{aligned} & 1000000000000000 \\ & 0000000000000000 \end{aligned}$	Reboot request	INFO-RBT

3 Troubleshooting and remedial actions

In motor operation, the motor or driver may not function properly due to an improper setting or wrong connection. When the motor cannot be operated properly, refer to the contents provided in this chapter and take an appropriate remedial action.
If the problem persists, contact your nearest Oriental Motor sales office.
This chapter describes problems that may occur in operation other than the initial settings. Refer to the AZ Series OPERATING MANUAL Function Edition for these contents.

Phenomenon	Possible cause	Remedial action
$\begin{array}{l}\text { - The motor is not excited. } \\ \text { - The motor output shaft can } \\ \text { be moved by hand. }\end{array}$	$\begin{array}{l}\text { Connection error of the motor } \\ \text { cable. }\end{array}$	Check the motor connection.

\hline \& \& $$
\begin{array}{l}\text { If the motor is put into a non-excitation state, the } \\
\text { motor windings is brought into a state of being } \\
\text { short-circuited inside the driver, generating a larger } \\
\text { holding torque than when no current is supplied } \\
\text { (dynamic brake). To release the dynamic brake, shut } \\
\text { off the control power supply or turn the FREE input } \\
\text { ON. With the "Non-excitation mode selection (413Dh)," } \\
\text { you can select whether to enable the dynamic brake } \\
\text { status or the free-run status when the motor is in a } \\
\text { non-excitation state. }\end{array}
$$

$$
\begin{array}{l}\text { The motor has a holding torque } \\
\text { even if it is put into a non- } \\
\text { excitation state. }\end{array}
$$ \& Effect of dynamic brake. \& $$
\begin{array}{l}\text { When an electromagnetic brake } \\
\text { motor is used, the electromagnetic } \\
\text { brake is in a holding state. }\end{array}
$$

\hline Check the connection of the electromagnetic brake.\end{array}\right\}\)

When an alarm generates, check the alarm message using the EtherCAT communication or MEXE02.

$7 \quad$ Test operation using pulses

Table of contents
1 To execute operation by inputting
pulses.. 222
1-1 Operation flow... 222

1 To execute operation by inputting pulses

This part explains the flow to execute pulse-input operation.
Pulse-input operation can be used for test operation to check the motor movement. The dedicated excitation signal (CON) is used to excite the motor.

1-1 Operation flow

1. Turn on the main power supply and the control power supply.
2. Check the excitation command of EtherCAT communication is in an OFF state (the state is other than "Operation enabled").
3. Turn the CON input ON.
4. Check the PLS-RDY output has been turned ON and input pulses.

memo - The test operation cannot be started because the PLS-RDY is not turned ON even if the CON input is turned ON while the motor is in an excitation state via EtherCAT communication.

- The motor excitation state cannot be controlled or the motor operation cannot be executed via EtherCAT communication while pulse-input operation is performed.

8 Reference materials

Table of contents

1 Timing chart 224
2 Specifications 225
2-1 General specifications............................. 225
2-2 Product specifications................................. 226
3 Regulations and standards................ 228
3-1 UL Standards ... 228
3-2 EU Directives... 228
$\begin{array}{ll}\text { 3-3 } & \text { Functional safety } \\ & \text { (AC power input driver only) } 229\end{array}$
3-4 Republic of Korea, Radio Waves Act....... 229
3-5 RoHS Directive ... 229

1 Timing chart

Power ON

*1 It varies depending on the timing when the command is transited from the EtherCAT master.
*2 It represents when the excitation command is received at the same time as the excitation command reception is changed to "Possible."

2 Specifications

2-1 General specifications

AC power input driver

Degree of protection		IP10
Operating environment	Ambient temperature	0 to $+55^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+131^{\circ} \mathrm{F}\right){ }^{*}$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 1,000 m (3,300 ft.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water, or oil.
Storage environment Shipping environment	Ambient temperature	-25 to $+70^{\circ} \mathrm{C}\left[-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right]$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to $3,000 \mathrm{~m}(10,000 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water, or oil.
Insulation resistance		$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - Protective Earth Terminal - Main power supply input terminal - Encoder connector - Main power supply input terminal - I/O signal connector - Main power supply input terminal
Dielectric strength		Sufficient to withstand the specified voltage applied between the following places for 1 minute: - Protective Earth Terminal - Main power supply input terminal 1.5 kVAC $50 / 60 \mathrm{~Hz}$ - Encoder connector - Main power supply input terminal 1.8 kVAC $50 / 60 \mathrm{~Hz}$ - I/O signal connector - Main power supply input terminal $1.8 \mathrm{kVAC} 50 / 60 \mathrm{~Hz}$

* When installing a driver on a heat sink [material: aluminum, $200 \times 200 \times 2 \mathrm{~mm}$ ($7.87 \times 7.87 \times 0.08$ in.) or equivalent].

DC power input driver

Degree of protection		IP10
Operating environment	Ambient temperature	0 to $+50^{\circ} \mathrm{C}\left(+32\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 1,000 m (3,300 ft.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water, or oil.
Storage environment Shipping environment	Ambient temperature	-25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$ (non-freezing)
	Humidity	85% or less (non-condensing)
	Altitude	Up to 3,000 m ($10,000 \mathrm{ft}$.) above sea level
	Surrounding atmosphere	No corrosive gas, dust, water, or oil.
Insulation resistance		$100 \mathrm{M} \Omega$ or more when 500 VDC megger is applied between the following places: - Protective Earth Terminal - Power supply input terminal *

[^12]
2-2 Product specifications

AC power input driver

| Driver model | AZD-AED | AZD-CED |
| :--- | :--- | :--- | :--- |

*1 The input current varies depending on the motor combined. Check on p.28.
*2 When an electromagnetic brake motor is used, the input voltage is $24 \mathrm{VDC} \pm 4 \%$ if the wiring distance between the motor and the driver is extended to 20 m (65.6 ft .) using our cable.
*3 The value in parentheses () is the one when the electromagnetic brake motor is connected. The AZM46 type is 0.33 A .

DC power input driver

Driver model		AZD-KED
Main power	Input voltage	- $24 \mathrm{VDC} \pm 5$ \% -48VDC $\pm 5 \%$
	Input current	0.4 to 3.3 A *1
Control power supply	Input voltage	$24 \mathrm{VDC} \pm 5$ \% *2
	Input current	0.15 A (0.4 A) *3
Interface	Pulse input	- Number of input points: 2, photocoupler - Maximum input pulse frequency - Line driver output of the EtherCAT master 1 MHz (duty cycle 50%) - Open-collector output of the EtherCAT master 250 kHz (duty cycle 50 \%)
	Control input	Number of input points: 6, photocoupler
	Pulse output	Number of output points: 2, line driver
	Control output	Number of output points: 6, photocoupler/open collector
	Power removal signal input	Number of input points: 2, photocoupler
	Power removal monitor output	Number of output point: 1, photocoupler/open collector
	Field network	EtherCAT

*1 The input current varies depending on the motor combined. Check on p.63.
*2 When an electromagnetic brake motor is used, the input voltage is $24 \mathrm{VDC} \pm 4 \%$ if the wiring distance between the motor and the driver is extended to 20 m (65.6 ft .) using our cable.
*3 The value in parentheses () is the one when the electromagnetic brake motor is connected. The AZM46 type is 0.23 A .

3 Regulations and standards

3-1 UL Standards

Check the APPENDIX UL Standards for AZ Series for recognition information about UL Standards.

3-2 EU Directives

■ CE Marking (AC power input driver)
This product is affixed with the CE Marking under the Low Voltage Directive, the Machinery Directive, and the EMC Directive.
EU Declaration of Conformity can be downloaded from Download Page of the product in Oriental Motor Website (https://www.orientalmotor.eu/).

- Low Voltage Directive

Applicable standard	EN 61800-5-1
Installation conditions	To be incorporated in equipment. Overvoltage category: II (EN Standards)
Pollution degree: 2 Degree of protection: IP10 Protection against electric shock: Class I equipment	

- This product cannot be used in IT power distribution systems.
- Install the product inside an enclosure in order to avoid contact with hands.
- Ensure protective grounding if a product can be touched with hands. Make sure to ground the Protective Earth Terminals of the motor and the driver.
- To protect against electric shock using an earth leakage breaker (RCD), connect a type B earth leakage breaker to the power supply side of the driver.
- Use a molded case circuit breaker (MCCB) that conforms to EN standards or IEC Standards.
- Isolate the motor cable, the power supply cable and other drive cables from the signal cables by means of double insulation.
- The temperature of the driver's heat sink may exceed $90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$ depending on the driving condition. Observe the followings.
- Do not touch the driver while operating.
- Do not use the driver near combustibles.
- Be sure to perform a test operation and check the driver temperature.

- Machinery Directive

Applicable standards: EN ISO 12100, EN 61800-5-2, EN 62061, EN ISO 13849-1: 2015

- EMC Directive

This product is conducted EMC testing under the conditions specified in "Example of installation and wiring" on p.36. The conformance of your mechanical equipment with the EMC Directive will vary depending on such factors as the configuration, wiring, and layout for other control system devices and electrical parts used with this product. It therefore must be verified through conducting EMC measures in a state where all parts including this product have been installed in the equipment.

Applicable Standards

EMI	EN 55011 Group 1 Class A, EN 61000-6-4, EN 61800-3
EMS	EN 61000-6-2, EN 61800-3

This equipment is not intended for use in residential environments nor for use on a low-voltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

■ CE Marking (DC power input driver)

This product is affixed with the CE Marking under the EMC Directive.

- Low Voltage Directive

The input power supply voltage of this product is $24 \mathrm{VDC} / 48 \mathrm{VDC}$. Therefore this product is not subject to the Low Voltage Directive, but install and connect it as follows.

- This product is designed and manufactured to be incorporated in equipment. Be sure to install the product inside an enclosure.
- For the driver power supply, use a DC power supply with reinforced insulation on its primary and secondary sides.
- EMC Directive

This product is conducted EMC testing under the conditions specified in "Example of installation and wiring" on p.71. The conformance of your mechanical equipment with the EMC Directive will vary depending on such factors as the configuration, wiring, and layout for other control system devices and electrical parts used with this product. It therefore must be verified through conducting EMC measures in a state where all parts including this product have been installed in the equipment.

Applicable Standards

EMI	EN 55011 Group1 Class A EN 61000-6-4
EMS	EN 61000-6-2

\triangle CAUTION
This equipment is not intended for use in residential environments nor for use on a low-voltage public network supplied in residential premises, and it may not provide adequate protection to radio reception interference in such environments.

3-3 Functional safety (AC power input driver only)

This product is certified by TÜV SÜD Product Service GmbH under the following standards and affixed with the TÜV SÜD Mark. It is not a certified product if the TÜV SÜD Mark is not affixed.
$\left.\begin{array}{c|c|l}\hline & & \begin{array}{l}\text { IEC 61800-5-2, EN 61800-5-2 } \\ \text { IEC 61508-1, EN 61508-1 } \\ \text { Applicable } \\ \text { standards }\end{array} \\ & \text { Functional safety } \\ \text { IEC 61508-2, EN 61508-2 } \\ \text { IEC 62061, EN 62061 } \\ \text { ISO 13849-1: 2015, EN ISO 13849-1: 2015 }\end{array}\right]$

- Unauthorized reproduction or copying of all or part of this manual is prohibited. If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor sales office.
- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact your nearest Oriental Motor sales office.
- Orientalmotor, $\alpha_{\text {STEP, }}$ and ABZO sensor are registered trademarks or trademarks of Oriental Motor Co., Ltd., in Japan and other countries.
EtherCAT ${ }^{\star}$ is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.
© Copyright ORIENTAL MOTOR CO., LTD. 2019
- Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP.
Technical Support Tel:800-468-3982
8:30am EST to $5: 00$ pm PST (M-F)
www.orientalmotor.com
ORIENTAL MOTOR (EUROPA) GmbH
Schiessstraße 44, 40549 Düsseldorf, Germany Technical Support Tel:00 800/22 556622 www.orientalmotor.de

ORIENTAL MOTOR (UK) LTD.
Tel:+44-1256347090 www.oriental-motor.co.uk

ORIENTAL MOTOR (FRANCE) SARL
Tel:+33-1 47869750
www.orientalmotor.fr
ORIENTAL MOTOR ITALIA s.r.I.
Tel:+39-02-93906347
www.orientalmotor.it

ORIENTAL MOTOR ASIA PACIFIC PTE. LTD
Singapore
Tel:1800-842-0280
www.orientalmotor.com.sg
ORIENTAL MOTOR (MALAYSIA) SDN. BHD.
Tel:1800-806-161
www.orientalmotor.com.my
ORIENTAL MOTOR (THAILAND) CO., LTD.
Tel:1800-888-881
www.orientalmotor.co.th
ORIENTAL MOTOR (INDIA) PVT. LTD.
Tel:1800-120-1995 (For English)
1800-121-4149 (For Hindi)
www.orientalmotor.co.in
TAIWAN ORIENTAL MOTOR CO., LTD.
Tel:0800-060708
www.orientalmotor.com.tw
SHANGHAI ORIENTAL MOTOR CO., LTD.
Tel:400-820-6516
www.orientalmotor.com.cn

NA ORIENTAL MOTOR CO., LTD.

Korea

Tel:080-777-2042
www.inaom.co.kr
ORIENTAL MOTOR CO., LTD.
4-8-1 Higashiueno, Taito-ku, Tokyo
110-8536 Japan
Tel:+81-3-6744-0361
www.orientalmotor.co.jp

[^0]: *1 The driver described in this manual can be combined with products that begin with these model names.
 *2 For these motorized actuators, the equipped motors have been evaluated to affix the CE Marking. Check the model name of the equipped motor with the nameplate.

[^1]: * Values in brackets [] are signals when the 1-pulse input mode is set. Values in parentheses () are initial values.

[^2]: * Values in brackets [] are signals when the 1-pulse input mode is set.

 Values in parentheses () are initial values.

[^3]: * Values in brackets [] are signals when the 1-pulse input mode is set.

 Values in parentheses () are initial values.

[^4]: * Values in brackets [] are signals when the 1-pulse input mode is set. Values in parentheses () are initial values.

[^5]: * Values in brackets [] are signals when the 1-pulse input mode is set.

 Values in parentheses () are initial values.

[^6]: * Values in brackets [] are signals when the 1-pulse input mode is set.

 Values in parentheses () are initial values.

[^7]: * Voltage enabled is 1 while the main power is input.

[^8]: * The value \square represents the coordinate of the position where the motor stopped.

[^9]: * After pulling out of the limit sensor, the motor rotates to stop according to the value set in the "(HOME) Backward steps in 2 sensor home-seeking (4169h)."

[^10]: * After pulling out of the HOME sensor, the motor rotates to stop according to the value set in the "(HOME) Operating amount in uni-directional home-seeking (416Ah)."

[^11]: * The motor moves from the mechanical end according to the value set in the "(HOME) Backward steps in push-homeseeking (416Eh)" and stop.

[^12]: * The main power supply input terminals and the control power supply input terminals are not electrically insulated. Check using either of terminals.

