Orientalmotor

Motorized actuator

Function Setting Edition

Introduction

Motorized actuator equipped the AZ Series

Motorized actuator equipped the AR Series

Motorized actuator equipped the RKII Series

Thank you for purchasing an Oriental Motor product.
This Manual describes product handling procedures and safety precautions.

- Please read it thoroughly to ensure safe operation.
- Always keep the manual where it is readily available.
1 Introduction
1 Introduction 6
1-1 Before use 6
1-2 Related operating manuals 6
1-3 Product lineup for motorized actuators 7
2 Motorized actuator equipped the AZ Series
1 Setting of the motorized linear slide, motorized cylinder 10
1-1 Setting flow 10
1-2 Creating the recovery data file 11
1-3 Parameter setting list 12
1-4 Traveling direction of the moving part. 18
1-5 Return-to-home operation. 18
1-6 Push-motion return-to-home operation 20
1-7 Push-motion operation 22
1-8 Current setting of push-motion operation. 23
2 Setting of the hollow rotary actuator. 24
2-1 Setting flow 24
2-2 Parameter setting list 25
2-3 Rotation direction of output table 27
2-4 Operation setting 27
2-5 Position coordinate management of the output table 28
2-6 Positioning operation using the wrap function 28
3 Motorized actuator equipped the AR Series
1 Setting of the motorized linear slide and motorized cylinder 34
1-1 Setting flow 34
1-2 Parameter setting example 35
1-3 Traveling direction of the moving part. 45
1-4 Operation setting 46
1-5 Return-to-home operation 48
1-6 Push-motion return-to-home operation 49
1-7 Push-motion operation 52
1-8 Current setting of push-motion operation. 53
2 Setting of the hollow rotary actuator. 55
2-1 Setting flow 55
2-2 Parameter setting list 56
2-3 Rotation direction of output table 58
2-4 Operation setting 58
2-5 Return-to-home operation 59

4 Motorized actuator equipped the RKII Series

1 Setting of the hollow rotary actuator... 62

1 Introduction

Table of contents

1 Introduction .. 6
1-1 Before use... 6
1-2 Related operating manuals.......................... 6
1-3 Product lineup for motorized actuators.... 7

1 Introduction

1-1 Before use

Only qualified personnel of electrical and mechanical engineering should work with the product.
Use the product correctly after thoroughly reading the section "Safety precautions" on the OPERATING MANUAL
Actuator Edition. In addition, be sure to observe the contents described in warning, caution, and note in this manual. The motorized actuator is designed and manufactured to be incorporated in general industrial equipment. Do not use for any other purpose. Oriental Motor Co., Ltd. is not responsible for any damage caused through failure to observe this warning.
Notation on this manual

. WARNING

\triangle CAUTION

Note

The instructions, which accompany a "DANGER" symbol, indicate that mishandling the product may result in an imminent danger leading to immediate death or serious injury.
Handling the product without observing the instructions that accompany a "WARNING" symbol may result in serious injury or death.
Handling the product without observing the instructions that accompany a "CAUTION" symbol may result in injury or property damage.

The items under this heading contain important handling instructions that the user should observe to ensure safe use of the product.

1-2 Related operating manuals

For operating manuals, download from Oriental Motor Website Download Page or contact your nearest Oriental Motor sales office.

- Motorized actuator equipped with the AZ Series
- OPERATING MANUAL Actuator Edition
- Motorized Actuator OPERATING MANUAL Function Setting Edition (this document)
- AZ Series/Motorized Actuator equipped with AZ Series OPERATING MANUAL Function Edition
- APPENDIX UL Standards for AZ Series

Refer to the operating manual of the driver for contents not described in these manuals.
■ Motorized actuator equipped with the AR Series

- OPERATING MANUAL Actuator Edition
- Motorized Actuator OPERATING MANUAL Function Setting Edition (this document)
- AR Series/Motorized Actuator equipped with AR Series USER MANUAL
- APPENDIX UL Standards for AR Series

■ Motorized actuator equipped with the RKII Series

- OPERATING MANUAL Actuator Edition
- Motorized Actuator OPERATING MANUAL Function Setting Edition (this document)
- RKII Series/Motorized Actuator equipped with RKII Series USER MANUAL
- APPENDIX UL Standards and CSA Standards for RKII Series

1-3 Product lineup for motorized actuators

This manual explains the motorized actuators described in the table. The setting of parameters for the motorized actuator is required according to the equipped motor, leads of the actuator, gear ratio, size and others.

Motorized actuator type	Series name	Equipped motor		
		AZ Series	AR Series	RKII Series
Motorized linear slide	EAS Series EZS Series EZSH Series	0	0	-
Motorized cylinder	EAC Series	\bigcirc	\bigcirc	-
Hollow rotary actuator	DGII Series*	O*	\bigcirc	\bigcirc
Parameter setting		Parameters have been set at the time of shipment.	Necessary	- Built-in Controller Type: Necessary - Pulse input type: Not necessary

O: Available

* Use the DGII Series of the motor horizontal mounting together with the support software MEXEO2 with software version 3.54 or later and the driver with software version 4.30 or later.
Using the MEXEO2 with software version 3.54 or later can update the version of the driver to the latest version. Refer to the Support software MEXE02 OPERATING MANUAL for details.

2
 Motorized actuator equipped the AZ Series

Table of contents

1 Setting of the motorized linear slide, motorized cylinder 10
1-1 Setting flow 10
1-2 Creating the recovery data file. 11
1-3 Parameter setting list 12
1-4 Traveling direction of the moving part... 18
1-5 Return-to-home operation 18
1-6 Push-motion return-to-home operation 20
1-7 Push-motion operation 22
1-8 Current setting of push-motion operation 23
2 Setting of the hollow rotary actuator 24
2-1 Setting flow 24
2-2 Parameter setting list 25
2-3 Rotation direction of output table 27
2-4 Operation setting 27
2-5 Position coordinate management of the output table 28
2-6 Positioning operation using the wrap function 28

1 Setting of the motorized linear slide, motorized cylinder

This chapter explains the parameters and operation functions of the motorized linear slide, motorized cylinder. (Hereinafter described as motorized actuator)

1-1 Setting flow

1 Install the motorized actuator.

2 Install and connect a driver.

3 Start the MEXEO2

4 Parameters such as the traveling direction and minimum travel amount have been set in the ABZO sensor at the time of shipment.

The operation data for the motorized actuator equipped the $\mathbf{A Z}$ Series is set on the millimeter unit.

5 Copy the ABZO information (fixed value) to the driver.
Using the MEXE02, match the ABZO information (fixed value) and the setting value of the driver parameter.

6 Create a recovery data file.

The ABZO information (fixed value) can be stored as the recovery data file.
Save the recovery data file in a PC as a data file. Refer to the AZ Series OPERATING MANUAL Function Edition for details.

7 Set the software limit when no sensor is used.

[^0]9 Save the set data.

1-2 Creating the recovery data file

The recovery data file represents a file saved the factory setting of the product.
Create the recovery data file initially in case of replacing the product for maintenance or product damage. Save the recovery data file in a PC as a data file.
Refer to the AZ Series OPERATING MANUAL Function Edition for details.
Note - Be sure to create the recovery data file when the motorized actuator is used.

- Be sure to create the recovery data file before the motorized actuator is installed in equipment.

Motor for maintenance

The actuator model name indicated on the actuator nameplate and the corresponding motor model name for replacement are as follows.
Contact your nearest Oriental Motor sales office when purchasing.

- AC power input type

Motorized actuator model	Motor model
EASM40000000AZAC	AZM46AC
EASM40000000AZMC	AZM46MC
EASM60000000AZAC	AZM66AC
EASM6000000OAZMC	AZM66MC
EACM4000000AZAC-O	AZM46AC
EACM4OOOOOOAZMC-O	AZM46MC
EACM6000000AZAC-O	AZM66AC
EACM6000000AZMC-O	AZM66MC
EZSM30000000AZAC	AZM46AC
EZSM3000000OAZMC	AZM46MC
EZSM40000000AZAC	AZM46AC
EZSM4000000OAZMC	AZM46MC
EZSM60000000AZAC	AZM66AC
EZSM60000000AZMC	AZM66MC
EZSHM6000000AZAC	AZM66AC
EZSHM6000000AZMC	AZM66MC

- DC power input type

Motorized actuator model	Motor model
EASM2OOOOOOOAZAK	AZM24AK
EASM4OOOOOOOAZAK	AZM46AK
EASM4OOOOOOOAZMK	AZM46MK
EASM6OOOOOOOAZAK	AZM66AK
EASM6OOOOOOOAZMK	AZM66MK
EACM2OOOOOOAZAK-O	AZM24AK
EACM4OOOOOOAZAK-O	AZM46AK
EACM4OOOOOOAZMK-O	AZM46MK
EACM6OOOOOOAZAK-O	AZM66AK
EACM6OOOOOOAZMK-O	AZM66MK
EZSM3OOOOOOOAZAK	AZM46AK
EZSM3OOOOOOOAZMK	AZM46MK
EZSM4OOOOOOOAZAK	AZM46AK
EZSM4OOOOOOOAZMK	AZM46MK
EZSM6OOOOOOOAZAK	AZM66AK
EZSM6OOOOOOOAZMK	AZM66MK

1-3 Parameter setting list

Parameters for the motorized actuator are set as follows at the time of shipment.

- In the case of the motorized actuator of the DC power input type, the operating speed may not reach the maximum speed depending on the ambient temperature or motor cable length.
- In the case of the pulse input type driver, use the function setting switch in the state of the factory setting. If it is changed, the actuator operates with a certain number of resolution since the ABZO setting of the motor does not apply to the driver.
- AC power input type products of the EASM6, EZSM6, EZSHM6 or EACM6 model; If a load is operated in a vertical direction, an overvoltage alarm may generate depending on the driving condition. When the alarm has generated, reconsider the operating condition or use our regeneration resistor.

Lead: 3 mm

Item	EAS/EAC Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
- Lead [mm]	3	-
- Minimum travel amount [mm] (Resolution)	0.01 (300)	$0.003(1,000)$
Base setting parameter		
- Electronic damper function	Enable (for motorized linear slide)	Enable (for standard/geared motor)
Motor \& Mechanism parameter		
- Mechanism settings	Prioritize ABZO setting *1	Manual setting
- Electronic gear A	10	1
- Electronic gear B	3	1
- Motor rotation direction	Positive side=Clockwise	Positive side=Clockwise
- Mechanism type	mm	step
- Mechanism lead [mm]	3	1
- Mechanism lead decimal digit setting	$\times 1$ [mm]	
- JOG/HOME/ZHOME operation setting	Prioritize ABZO setting *1	Manual setting
- (JOG) Operating speed	10 [mm/s]	1,000 [Hz]
-(JOG) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
$\bullet(J O G) S t a r t i n g ~ s p e e d ~$	$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
\bullet (JOG) Operating speed (high)	50 [mm/s]	5,000 [Hz]
\bullet (ZHOME) Operating speed	$50[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
\bullet (ZHOME) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (ZHOME) Starting speed	5 [mm/s]	500 [Hz]
\bullet (HOME) Home-seeking mode	Push-motion	3-sensor
\bullet (HOME) Starting direction	Negative side	Positive side
\bullet (HOME) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (HOME) Starting speed	$5[\mathrm{~mm} / \mathrm{s}]$	$500[\mathrm{~Hz}]$
\bullet (HOME) Operating speed	50 [mm/s]	$5,000[\mathrm{~Hz}]$
- (HOME) Last speed	$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
- (HOME) Backward steps in 2 sensor homeseeking	5 [mm]	500 [step]
-(HOME) Operating amount in uni-directional home-seeking	5 [mm]	500 [step]
- (HOME) Operating current for push-homeseeking	This item has been set for each model.	100 [\%]

Item	EAS/EAC Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
- (HOME) Backward steps after first entry in push-home-seeking	4 [mm]	500 [step]
Mechanism protection parameter *2		
- Maximum starting speed	50 [mm/s]	4,000,000 [Hz]
- Maximum operating speed	150 [mm/s]	4,000,000 [Hz]
- Maximum pushing speed	25 [mm/s]	4,000,000 [Hz]
- Maximum pushing return-to-home speed	50 [mm/s]	4,000,000 [Hz]
- Maximum push current *3	This item has been set for each model.	100 [\%]

*1 When changing the factory setting of parameter items, change the setting for the "Mechanism settings" parameter and "JOG/HOME/ZHOME operation setting" parameter to "Manual setting."
*2 Mechanism protection parameters cannot be set by customers.
*3 The push current actually usable is different from the push current having set. Check with the graph shown on p.23.

Lead: 6 mm

Item		EAS/EZS/EAC Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
- Lead [mm]		6	-
- Minimum travel amount [mm] (Resolution)		0.01 (600)	$0.006(1,000)$
Base setting parameter			
- Electronic damper function		Enable (for motorized linear slide)	Enable (for standard/geared motor)
Motor \& Mechanism parameter			
- Mechanism settings		Prioritize ABZO setting *1	Manual setting
- Electronic gear A		5	1
- Electronic gear B		3	1
- Motor rotation direction	In-line motor mounting type	Positive side=Clockwise	Positive side=Clockwise
	Parallel motor mounting type	Positive side=Counterclockwise	
- Mechanism type		mm	step
- Mechanism lead [mm]		6	1
- Mechanism lead decimal digit setting		$\times 1$ [mm]	
- JOG/HOME/ZHOME operation setting		Prioritize ABZO setting *1	Manual setting
- (JOG) Operating speed		10 [mm/s]	1,000 [Hz]
- (JOG) Acceleration/deceleration		$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
- (JOG) Starting speed		$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
- (JOG) Operating speed (high)		50 [mm/s]	5,000 [Hz]
- (ZHOME) Operating speed		$50[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
- (ZHOME) Acceleration/deceleration		$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
- (ZHOME) Starting speed		5 [mm/s]	500 [Hz]
\bullet (HOME) Home-seeking mode		Push-motion	3-sensor
- (HOME) Starting direction	In-line motor mounting type	Negative side	Positive side
	Parallel motor mounting type	Negative side	
- (HOME) Acceleration/deceleration		$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]

Item		EAS/EZS/EAC Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
\bullet (HOME) Starting speed		5 [mm/s]	500 [Hz]
\bullet (HOME) Operating speed		$50[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
\bullet (HOME) Last speed		5 [mm/s]	500 [Hz]
- (HOME) Backward steps in 2 sensor homeseeking		5 [mm]	500 [step]
- (HOME) Operating amount in uni-directional home-seeking		5 [mm]	500 [step]
- (HOME) Operating current for push-homeseeking		This item has been set for each model.	100 [\%]
- (HOME) Backward steps after first entry in push-home-seeking	EASM4, EZSM3, EZSM4	3 [mm]	500 [step]
	EASM6, EZSM6	6 [mm]	
	EASM2, EACM2 EACM4, EACM6	4 [mm]	
Mechanism protection parameter *2			
- Maximum starting speed		100 [mm/s]	4,000,000 [Hz]
- Maximum operating speed		This item has been set for each model.	4,000,000 [Hz]
- Maximum pushing speed		25 [mm/s]	4,000,000 [Hz]
- Maximum pushing return-to-home speed		50 [mm/s]	4,000,000 [Hz]
- Maximum push current *3		This item has been set for each model.	100 [\%]

*1 When changing the factory setting of parameter items, change the setting for the "Mechanism settings" parameter and "JOG/HOME/ZHOME operation setting" parameter to "Manual setting."
*2 Mechanism protection parameters cannot be set by customers.
*3 The push current actually usable is different from the push current having set. Check with the graph shown on p.23.

Lead: 12 mm

Item		EAS/EZS/EAC Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
- Lead [mm]		12	-
- Minimum travel amount [mm] (Resolution)		$0.01(1,200)$	$0.012(1,000)$
Base setting parameter			
- Electronic damper function		Enable (for motorized linear slide)	Enable (for standard/geared motor)
Motor \& Mechanism parameter			
- Mechanism settings		Prioritize ABZO setting *1	Manual setting
- Electronic gear A		5	1
- Electronic gear B		6	1
- Motor rotation direction	In-line motor mounting type	Positive side=Clockwise	Positive side=Clockwise
	Parallel motor mounting type	Positive side=Counterclockwise	
- Mechanism type		mm	step
- Mechanism lead [mm]		12	1
- Mechanism lead decimal digit setting		$\times 1$ [mm]	
- JOG/HOME/ZHOME operation setting		Prioritize ABZO setting *1	Manual setting
- (JOG) Operating speed		10 [mm/s]	1,000 [Hz]

Item		EAS/EZS/EAC Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
\bullet (JOG) Acceleration/deceleration		$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (JOG) Starting speed		$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
\bullet (JOG) Operating speed (high)		50 [mm/s]	5,000 [Hz]
\bullet (ZHOME) Operating speed		100 [mm/s]	5,000 [Hz]
\bullet (ZHOME) Acceleration/deceleration		$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (ZHOME) Starting speed		5 [mm/s]	500 [Hz]
\bullet (HOME) Home-seeking mode		Push-motion	3-sensor
- (HOME) Starting direction	In-line motor mounting type	Negative side	Positive side
	Parallel motor mounting type	Negative side	
- (HOME) Acceleration/deceleration		$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (HOME) Starting speed		$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
\bullet (HOME) Operating speed		$100[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
\bullet (HOME) Last speed		5 [mm/s]	500 [Hz]
- (HOME) Backward steps in 2 sensor homeseeking		5 [mm]	500 [step]
- (HOME) Operating amount in uni-directional home-seeking		5 [mm]	500 [step]
(HOME) Operating current for push-homeseeking		This item has been set for each model.	100 [\%]
- (HOME) Backward steps after first entry in push-home-seeking	$\begin{gathered} \text { EASM4, EZSM3, } \\ \text { EZSM4 } \end{gathered}$	3 [mm]	500 [step]
	EASM6, EZSM6	6 [mm]	
	EACM4, EACM6	4 [mm]	
Mechanism protection parameter *2			
- Maximum starting speed		200 [mm/s]	4,000,000 [Hz]
- Maximum operating speed		This item has been set for each model.	4,000,000 [Hz]
- Maximum pushing speed		25 [mm/s]	4,000,000 [Hz]
- Maximum pushing return-to-home speed		100 [mm/s]	4,000,000 [Hz]
- Maximum push current *3		This item has been set for each model.	100 [\%]

*1 When changing the factory setting of parameter items, change the setting for the "Mechanism settings" parameter and "JOG/HOME/ZHOME operation setting" parameter to "Manual setting."
*2 Mechanism protection parameters cannot be set by customers.
*3 The push current actually usable is different from the push current having set. Check with the graph shown on p. 23 .

Lead: 20 mm

Item	EZSH Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
- Lead [mm]	20	-
- Minimum travel amount [mm] (Resolution)	$0.01(2,000)$	$0.02(1,000)$
Base setting parameter		
- Electronic damper function	Enable	Enable
Motor \& Mechanism parameter		
- Mechanism settings	Prioritize ABZO setting *1	Manual setting
- Electronic gear A	1	1
- Electronic gear B	2	1
- Motor rotation direction	Positive side=Clockwise	Positive side=Clockwise
- Mechanism type	mm	step
- Mechanism lead [mm]	20	1
- Mechanism lead decimal digit setting	$\times 1$ [mm]	
- Mechanism limit parameter setting	Follow ABZO setting	Disable
- Mechanism protection parameter setting	Follow ABZO setting	Disable
\bullet JOG/HOME/ZHOME operation setting	Prioritize ABZO setting *1	Manual setting
\bullet (JOG) Operating speed	10 [mm/s]	1,000 [Hz]
-(JOG) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (JOG) Starting speed	$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
\bullet (JOG) Operating speed (high)	$50[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
\bullet (ZHOME) Operating speed	$100[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
- (ZHOME) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (ZHOME) Starting speed	5 [mm/s]	500 [Hz]
\bullet (HOME) Home-seeking mode	3-sensor	3-sensor
\bullet (HOME) Starting direction	Negative side	Positive side
\bullet (HOME) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (HOME) Starting speed	$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
\bullet (HOME) Operating speed	$100[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
\bullet (HOME) Last speed	5 [mm/s]	500 [Hz]
- (HOME) Backward steps in 2 sensor homeseeking	5 [mm]	500 [step]
- (HOME) Operating amount in uni-directional home-seeking	5 [mm]	500 [step]
Mechanism protection parameter *2		
- Maximum starting speed	200 [mm/s]	4,000,000 [Hz]
- Maximum operating speed	This item has been set for each model.	4,000,000 [Hz]
- Maximum pushing speed	25 [mm/s]	4,000,000 [Hz]
- Maximum push current *3	100 [\%]	100 [\%]

*1 When changing the factory setting of parameter items, change the setting for the "Mechanism settings" parameter and "JOG/HOME/ZHOME operation setting" parameter to "Manual setting."
*2 Mechanism protection parameters cannot be set by customers.
*3 The push current actually usable is different from the push current having set. Check with the graph shown on p. 23 .

Lead: 30 mm

 ©DANGER- Do not enter the moving range of the motorized actuator while the power is supplied. Doing so may result in serious injury.
- Be sure to provide a safety cage according to EN ISO 13857. Also, touching a table by hand may cause serious injury.
- Operate the data setter outside the safety cage. Failure to do so may result in injury.

Item	EZSH Series factory setting	Standard/geared motor for maintenance (When replacing the motor)
- Lead [mm]	30	-
- Minimum travel amount [mm] (Resolution)	$0.01(3,000)$	$0.03(1,000)$
Base setting parameter		
- Electronic damper function	Enable	Enable
Motor \& Mechanism parameter		
- Mechanism settings	Prioritize ABZO setting *1	Manual setting
- Electronic gear A	1	1
- Electronic gear B	3	1
- Motor rotation direction	Positive side=Clockwise	Positive side=Clockwise
- Mechanism type	mm	step
- Mechanism lead [mm]	30	1
- Mechanism lead decimal digit setting	$\times 1$ [mm]	
- Mechanism limit parameter setting	Follow ABZO setting	Disable
- Mechanism protection parameter setting	Follow ABZO setting	Disable
- JOG/HOME/ZHOME operation setting	Prioritize ABZO setting *1	Manual setting
\bullet (JOG) Operating speed	10 [mm/s]	1,000 [Hz]
- (JOG) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
- (JOG) Starting speed	$5[\mathrm{~mm} / \mathrm{s}]$	500 [Hz]
- (JOG) Operating speed (high)	$50[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
- (ZHOME) Operating speed	$100[\mathrm{~mm} / \mathrm{s}]$	5,000 [Hz]
- (ZHOME) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
- (ZHOME) Starting speed	5 [mm/s]	500 [Hz]
- (HOME) Home-seeking mode	3-sensor	3-sensor
- (HOME) Starting direction	Negative side	Positive side
- (HOME) Acceleration/deceleration	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (HOME) Starting speed	5 [mm/s]	500 [Hz]
- (HOME) Operating speed	100 [mm/s]	$5,000[\mathrm{~Hz}]$
- (HOME) Last speed	5 [mm/s]	500 [Hz]
- (HOME) Backward steps in 2 sensor home-seeking	5 [mm]	500 [step]
- (HOME) Operating amount in uni-directional home-seeking	5 [mm]	500 [step]
Mechanism protection parameter*2		
- Maximum starting speed	200 [mm/s]	4,000,000 [Hz]
- Maximum operating speed	This item has been set for each model.	4,000,000 [Hz]
- Maximum pushing speed	25 [mm/s]	4,000,000 [Hz]
- Maximum push current *3	100 [\%]	100 [\%]

*1 When changing the factory setting of parameter items, change the setting for the "Mechanism settings" parameter and "JOG/HOME/ZHOME operation setting" parameter to "Manual setting."
*2 Mechanism protection parameters cannot be set by customers.
*3 The push current actually usable is different from the push current having set. Check with the graph shown on p. 23 .

1-4 Traveling direction of the moving part

The traveling direction of the moving part varies depending on the setting of the travel amount or the input method of the pulse signal.

Setting	n -	Par
Operation by setting of parameter When setting the travel amount to the positive (+) side	The table moves to opposite the motor side.	The table moves to opposite the motor side.
Operation by pulse signal - 2-pulse input mode When inputting the pulse signal to the CW input - 1-pulse input mode When inputting the pulse signal to the PLS input while the DIR input is ON.		
Operation by setting of parameter When setting the travel amount to the negative (-) side	The table moves to the motor side.	The table moves to the motor side.
Operation by pulse signal - 2-pulse input mode When inputting the pulse signal to the CCW input. - 1-pulse input mode When inputting the pulse signal to the PLS input while the DIR input is OFF.		

1-5 Return-to-home operation

Return-to-home is an operation in which the reference point of positioning (home) is detected. It is executed to return to the home from the present position when the time of power-on and upon completion of positioning operation.

■ High-speed return-to-home operation

High-speed return-to-home operation is an operation to return to the mechanical home on the absolute position coordinate set in advance.
Since the home is recognized by the ABZO sensor, return-to-home operation can be executed at the same speed as that of the normal positioning operation without using an external sensor.
When the ZHOME input is turned ON, high-speed return-to-home operation is started. The motor stops when the operation stop signal is turned ON while the motor is operating.

Return-to-home operation

Return-to-home operation is an operation to detect the home by using an external sensor. It is executed to return from the present position to the home at the time of power-on and upon completion of positioning operation. A sensor set is also provided as our product.
Return-to-home operation can be performed in the following four patterns.

Item	Description	Features
2-sensor mode	When the limit sensor is detected, the motor rotates in the reverse direction and pulls out of the limit sensor. After pulling out of the limit sensor, the motor moves to stop according to the value set in the "(HOME) Backward steps in 2 sensor home-seeking" parameter. The position at which the motor stopped becomes the home.	- Two external sensors are required. - The operating speed is low. (return-to-home starting speed)
3-sensor mode	When the limit sensor is detected, the motor rotates in the reverse direction and pulls out of the limit sensor. After that, the motor stops when the ON edge of the HOME sensor is detected. The position at which the motor stopped becomes the home.	- Three external sensors are required. *2 - The operating speed is high. (return-to-home operation speed)
1-sensor mode	The motor stops when the ON edge of the HOME sensor is detected. After that, the motor pulls out at the speed set in the "(HOME) Last speed" parameter until the OFF edge of the HOME sensor is detected. After pulling out of the limit sensor, the motor moves to stop according to the value set in the "(HOME) Operating amount in unidirectional home-seeking" parameter. The position at which the motor stopped becomes the home.	- One external sensor is required. - The operating speed is high. (return-to-home operation speed) - Not rotate in the reverse direction.
Push-motion mode *1	The motor rotates in the reverse direction when a mechanism installed to the motor presses against a stopper, etc. on the machine. After that, the motor moves according to the value of "(HOME) Backward steps after first entry in push-home-seeking," rotates in the reverse direction, and is operated at the home detection speed. The motor rotates in the reverse direction when a mechanism installed to the motor presses against a stopper, etc. on the machine, moves according to the value of "(HOME) Backward steps in push-home-seeking," and stops. The position at which the motor stopped becomes the home.	- An external sensor is not required. - The operating speed is high. (return-to-home operation speed)

*1 Do not perform push-motion return-to-home operation with the EZSH Series.
*2 When multiple external sensors cannot be installed to a motorized linear actuator and a rotational mechanism, the home can be detected with a single external sensor.

Sensor set

Sensor output	Applicable product		
	EAS Series	EZS Series	EZSH Series
NPN	PAES-S-2X, PAES-S-2Y		
	PAES-S-4X, PAES-S-4Y	PAES-S	PAES-S-6EZSH
	PAES-S-6X, PAES-S-6Y		
PNP	PAES-SY-2X, PAES-SY-2Y	PAES-SY	PAES-SY-6EZSH
	PAES-SY-4X, PAES-SY-4Y		

1-6 Push-motion return-to-home operation

© CAUTION

- Perform push-motion return-to-home operation in the specification range of the dynamic permissible moment. Failure to do so may result in injury or damage to equipment.
- EAC Series:

If push-motion return-to-home operation is performed in the direction opposite the motor side, provide an external mechanism where the rod can press within the effective stroke. Pressing in excess of the effective stroke may result in injury or damage to equipment.

- Lead 6 mm type products of the EASM2 or EACM2 model:

If a load is operated in a vertical direction, perform push-motion return-to-home operation to the downward direction. The home may vary if you perform it to the upward direction.

- Lead 12 mm type products of the EASM4, EZSM4 or EACM4 model:

If a load is operated in a vertical direction, perform push-motion return-to-home operation to the upward direction with a load mass of 4 kg or less. If the load is exceeded 4 kg , the home may vary.

■ Movement of push-motion return-to-home operation

If push-motion return-to-home operation is performed with keeping the initial value (0) for the "(HOME) Position offset" parameter, the moving part returns to the home to stop after hitting the actuator end. Refer to the "Distance from the actuator end to the home" on p.21.

- EAS/EZS/EAC Series

1. When push-motion return-to-home operation is performed, the moving part moves toward the actuator end.
2. The moving part hits the actuator end.

Motorized linear slide

Motorized cylinder

3. The moving part returns to the set home and stops.

Distance from the actuator

- Distance from the actuator end to the home

Series	Model	Distance from the actuator end to the home
EAS	$\mathbf{2}$	4 mm
	$\mathbf{4}$	3 mm
	$\mathbf{6}$	6 mm
EZS	$\mathbf{3 , 4}$	3 mm
	$\mathbf{6}$	6 mm
EAC	$\mathbf{2 , 4 , 6}$	4 mm

- Operating current of push-motion return-to-home

The push force for push-motion return-to-home operation is set in each actuator at the time of shipment.
■ Operating speed of push-motion return-to-home
The upper limit value of the push-motion return-to-home speed is shown next.

Series	Lead	Upper limit of push-motion return-to-home speed
EAS	3 mm	$25 \mathrm{~mm} / \mathrm{s}$
	6 mm	$50 \mathrm{~mm} / \mathrm{s}$
	12 mm	$100 \mathrm{~mm} / \mathrm{s}$
EZS	6 mm	$50 \mathrm{~mm} / \mathrm{s}$
	12 mm	$100 \mathrm{~mm} / \mathrm{s}$

1-7 Push-motion operation

The push force for push-motion operation is set using the push current. The maximum push force are shown in the table next.

Series	Model	Lead	Push force
EAS	$\mathbf{2}$	3 mm	80 N
		6 mm	40 N
		6 mm	200 N
	$\mathbf{6}$	12 mm	100 N
		6 mm	500 N
EZS	$\mathbf{3} \mathbf{4} \mathbf{4}$	6 mm	400 N
		$\mathbf{6}$	12 mm
			500 N
		12 mm	400 N
EZSH	$\mathbf{6}$	20 mm	325 N
		30 mm	220 N

Note Be sure to set the push current so that the upper limit value is not exceeded. Performing pushmotion operation with the current value exceeding the upper limit value may cause damage to the actuator or equipment. This may also cause deterioration in actuator specification.

1-8 Current setting of push-motion operation

The reference value of the push current is shown next. Check the actual push force using the product.

- Measurement result of the push force when the EAS/EZS/EAC Series is operated in the horizontal direction (average value)

memo The relationship between the push force and push current varies depending on the following conditions. Check the actual push force using the equipment.
- Installation direction of the actuator (horizontal direction installation, vertical direction installation)
- Type of the motorized cylinder (motorized cylinder without a guided-shaft or with guided-shafts, stroke)
- Customer's load condition such as jig
- Cable length
- Ambient temperature

Push speed

The upper limit value of the push speed is shown next.

Series	Upper limit of push speed
EAS, EAC, EZS, EZSH	$25 \mathrm{~mm} / \mathrm{s}$

2 Setting of the hollow rotary actuator

This chapter explains the parameters and operation functions of the hollow rotary actuator. (Hereinafter described as motorized actuator)

2-1 Setting flow

1 Install the motorized actuator.

2 Install and connect a driver.

3 Start the MEXE02.

4 Parameters of the driver have been set to the ABZO sensor at the time of shipment.

The operation data for the motorized actuator equipped the $\mathbf{A Z}$ Series is set on the degree unit.

5 Copy the ABZO information (fixed value) to the driver.
Using the MEXEO2, match the ABZO information (fixed value) and the setting value of the driver parameter.

memo

The ABZO information (fixed value) can be stored as the recovery data file. Save the recovery data file in a PC as a data file. Refer to the AZ Series OPERATING MANUAL Function Edition for details.

6 Set the coordinate.

The coordinate has been set to $\pm 180^{\circ}$ at the time of shipment.

The coordinate can be changed from 0° to 360° according to your application.

7 Set the software limit when no sensor is used.

8 Check the movement of the motorized actuator.

Using the "Teaching, remote operation" of the MEXEO2, check the movement of the motorized actuator.

9 Save the set data.

2-2 Parameter setting list

Parameters for the motorized actuator are set as follows at the time of shipment.
■ DGII Series Motor vertical mounting

Item	Factory setting	
- Step angle per revolution [${ }^{\circ}$]	360	
- Resolution of output table (minimum step angle [${ }^{\circ}$])	36,000 (0.01)	
Motor \& Mechanism parameter		
- Mechanism settings	Prioritize ABZO setting	
- Electronic gear A	1	
- Electronic gear B *1	2	
- Motor rotation direction *1	Positive side=Counterclockwise	
- Mechanism type	deg *2	step *2
- Initial coordinate generation \& wrap setting range [rev] *1	18	
- Initial coordinate generation \& wrap range offset ratio [\%]	50	
- Initial coordinate generation \& wrap coordinate offset value [deg]	0	
- Wrap setting	Enable	
- The number of the RND-ZERO output in wrap range	1	
\bullet (JOG) Travel amount	0.01 [deg]	1 [step]
\bullet (JOG) Operating speed	10 [deg/s]	1,000 [Hz]
-(JOG) Acceleration/deceleration	$10\left[\times 10^{3} \mathrm{deg} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (JOG) Starting speed	5 [deg/s]	500 [Hz]
- (JOG) Operating speed (high)	50 [deg/s]	5,000 [Hz]
\bullet (ZHOME) Operating speed	50 [deg/s]	5,000 [Hz]
\bullet (ZHOME) Acceleration/deceleration	$10\left[\times 10^{3} \mathrm{deg} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (ZHOME) Starting speed	5 [deg/s]	500 [Hz]
\bullet (HOME) Home-seeking mode	3-sensor	
- (HOME) Starting direction	Positive side *3	
\bullet (HOME) Acceleration/deceleration	$10\left[\times 10^{3} \mathrm{deg} / \mathrm{s}^{2}\right]$	1,000 [kHz/s]
\bullet (HOME) Starting speed	5 [deg/s]	500 [Hz]
\bullet (HOME) Operating speed	10 [deg/s]	1,000 [Hz]
- (HOME) Last speed	5 [deg/s]	500 [Hz]
- (HOME) Position offset	0 [deg]	0 [step]

*1 The value, which is different from the initial value of the MEXE02, is written to the ABZO.
*2 The unit of display on the MEXE02 can be switched to "deg" or "step" while the data is editing.

*3 The return-to-home rotation-direction of the output table is positive side (CW).
Note Push-motion operation as well as push-motion return-to-home operation cannot be performed with the DGII Series. If tried to perform these operations, an alarm of operation data error is generated.

■ DGII Series Motor horizontal mounting

Item		Factory setting	
- Step angle per revolution [$\left.{ }^{\circ}\right]$		360	
- Resolution of output table (minimum step angle [${ }^{\circ}$])		36,000 (0.01)	
Motor \& Mechanism parameter			
- Mechanism settings		Prioritize ABZO setting	
- Electronic gear A		1	
- Electronic gear B *1	Gear ratio 12	3	
	Gear ratio 18	2	
	Gear ratio 36	1	
- Motor rotation direction		Positive side=Clockwise	
- Mechanism type		deg *2	step *2
- Initial coordinate generation \& wrap setting range [rev] *1	Gear ratio 12	12	
	Gear ratio 18	18	
	Gear ratio 36	36	
- Initial coordinate generation \& wrap range offset ratio [\%]		50	
- Initial coordinate generation \& wrap coordinate offset value [deg]		0	
- Wrap setting		Enable	
- The number of the RND-ZERO output in wrap range		1	
\bullet - JOG) Travel amount		0.01 [deg]	1 [step]
\bullet - JOG) Operating speed		10 [deg/s]	1,000 [Hz]
- (JOG) Acceleration/deceleration *1		$0.05\left[\times 10^{3} \mathrm{deg} / \mathrm{s}^{2}\right]$	5 [kHz/s]
-(JOG) Starting speed		5 [deg/s\}	500 [Hz]
\bullet-(JOG) Operating speed (high)		50 [deg/s]	5,000 [Hz]
\bullet (ZHOME) Operating speed		50 [deg/s]	5,000 [Hz]
\bullet (ZHOME) Acceleration/deceleration *1		$0.45\left[\times 10^{3} \mathrm{deg} / \mathrm{s}^{2}\right]$	$45[\mathrm{kHz} / \mathrm{s}]$
\bullet (ZHOME) Starting speed		5 [deg/s]	500 [Hz]
\bullet (HOME) Home-seeking mode		3-sensor	
\bullet (HOME) Starting direction		Positive side *3	
\bullet •(HOME) Acceleration/deceleration *1		$0.05\left[\times 10^{3} \mathrm{deg} / \mathrm{s}^{2}\right]$	$5[\mathrm{kHz} / \mathrm{s}]$
\bullet (HOME) Starting speed		5 [deg/s]	500 [Hz]
\bullet (HOME) Operating speed		10 [deg/s]	1,000 [Hz]
-(HOME) Last speed		5 [deg/s]	500 [Hz]
\bullet •(HOME) Position offset		0 [deg]	0 [step]

*1 The value, which is different from the initial value of the MEXEO2, is written to the ABZO.
*2 The unit of display on the MEXE02 can be switched to "deg" or "step" while the data is editing.

*3 The return-to-home rotation-direction of the output table is positive side (CW).

[^1]
2-3 Rotation direction of output table

The rotation direction of the output table varies depending on the setting of the travel amount or the input method of the pulse signal.
Setting

Operation by setting of parameter
When setting the step angle to the positive (+) side
Operation by pulse signal
- 2-pulse input mode
When inputting the pulse signal to the CW input
- 1-pulse input mode
When inputting the pulse signal to the PLS input
while the DIR input is ON.
Operation by setting of parameter
When setting the step angle to the negative (-) side
Operation by pulse signal - 2-pulse input mode When inputting the pulse signal to the CCW input.
- 1-pulse input mode
When inputting the pulse signal to the PLS input
while the DIR input is OFF.

2-4 Operation setting

The factory setting of the minimum step angle is 0.01°.
The minimum step angle can be set using the "Electronic gear A," "Electronic gear B" parameters.
Refer to the AZ Series OPERATING MANUAL Function Edition for how to set the resolution using the electronic gears.
Note
In the case of the pulse input type driver, use the function setting switch in the state of the factory setting. If it is changed, the actuator operates with a certain number of resolution since the ABZO setting of the motor does not apply to the driver.

- Setting example

If the minimum step angle is set to " 0.1° " when the factory settings are 18 of the gear ratio and $36,000 \mathrm{P} / \mathrm{R}$ of the resolution

	Output table		Motor		Setting example for MEXE02	
	Minimum step angle	Resolution	Minimum step angle	Resolution	Electronic gear A	Electronic gear B
Initial value	0.01°	36,000 P/R	0.18°	2,000 P/R	The setting is	not required.
Setting example	0.1°	3,600 P/R	1.8°	200 P/R	1,800	360

The calculation formula of the resolution is as follows.

Therefore, set the electronic gear A to 1,800 and the electronic gear B to 360 .

2-5 Position coordinate management of the output table

A mechanical home and electrical home can be set for motorized actuators equipped the AZ Series. When SD (stored data) operation is performed, either of the home is required to set before operation. The position coordinate at the factory setting is $\pm 180^{\circ}$ as shown in the figure next.

- Mechanical home

The "user home" can be set by presetting the position. If the mechanical home is preset, the RND-ZERO output will be turned ON when the table passes through the mechanical home.
The figure shows the DGM1 30R-AZMC.

Electrical home

The electrical home is the home to set in the driver. It is set while the EL-PRST input is turned ON, and it is reset if the EL-PRST input is turned OFF.

2-6 Positioning operation using the wrap function

The following operations can be performed using the wrap function. Refer to the AZ Series OPERATING MANUAL Function Edition for details.

Coordinate setting	\quad Operation mode
$\pm 180^{\circ}$	\bullet Absolute positioning Specifies the position coordinate of the target position. \bullet Incremental positioning Specifies the distance to the target position.
}{Specifies the position coordinate of the target position within the wrap range. \bullet Wrap proximity positioning Specifies the position coordinate of the target position in the shortest distance within the wrap range. \bullet Wrap forward direction absolute positioning Specifies the position coordinate of the target position in the forward direction within the wrap range. \bullet Wrap reverse direction absolute positioning Specifies the position coordinate of the target position in the reverse direction within the wrap range.}	

- Comparison of positioning SD (stored data) operation

The step angle and rotaion direction of the output table vary depending on the operation mode.

- When operating from the 90° position after setting the position coordinate of " $\pm 180^{\circ}$

Set the parameters as follows;

- Initial coordinate generation/wrap coordinate setting: Prioritize ABZO setting (factory setting)
- Initial coordinate generation \& wrap setting range [rev]: 1.0 (factory setting)
- Initial coordinate generation \& wrap range offset ratio [\%]: 50.00 (factory setting)

AZ Pulse Input/Built-in Controller / DG2 (0.01deg/step) Data Operation data Operation I/O event Extended operation data setting Parameter Base settings Motor \& Mechanism(Coordinates/JOG/Home operation) ETO \& Alarm \& Info I/O action and function Direct-IN function Direct-OUT function Remote-I/O function(RS-485) EXT-IN \& VIR-IN \& USR-OUT function(Extend)	*	Opera	Motor \& Mechanism(Coordinates/JOG/Home operation)	
		1	Manual setting of the mechanism settings	Prioritize ABZO setting
		2	Electronic gear A	1
		3	Electronic gear B	1
		4	Motor rotation direction	Positive direction=CW
		5	Mechanism type	step(Rotary)
		6	Mechanism lead pitch [mm]	1
		7		
		8	Gear ratio setting (prioritize 0.00:ABZO setting)	0.00
		9		
		10	Initial coordinate generation/wrap coordinate setting	Proioritize ABZO setting
Operation	,	11	Initial coordinate generation \& wrap setting range [rev]	1.0
		12	Intitial coordinate generation \& wrap range offset ratio [\%]	50.00
d- Teaching, remote operation		13	Initial coordinate generation \& round coordinate offset value [deg]	0.00
Monitor		14	Wrap setting	Effective

Operation mode	When setting the operation data to 120°	When setting the operation data to 270°
Absolute positioning (POS-ABS) (CPOS) Specifies the position coordinate of the target position		
Incremental positioning (INC-POS) (CPOS) Incremental positioning (INC-POS) (FBPOS) Specifies the distance to the target position		

- When operating from the 90° position after setting the position coordinate to " 0 to 360° "

This is a setting example when connecting the product which gear ratio is 18 .
Set the parameters as follows;

- Initial coordinate generation/wrap coordinate setting: Manual setting
- Initial coordinate generation \& wrap setting range [rev]: 18
- Initial coordinate generation \& wrap range offset ratio [\%]: 0.00

AZ Pulse Input/Built-in Controller / DG2 (0.01deg/step) Data Operation data Operation I/O event Extended operation data setting Parameter Base settings Motor \& Mechanism(Coordinates/JOG/Home operation) ETO \& Alarm \& Info - I/O action and function Direct-IN function Direct-OUT function - Remote-I/O function(RS-485) EXT-IN \& VIR-IN \& USR-OUT function(Extend)	*	Opera	Motor \& Mechanism(Coordinates/JOG/Home operation)	
	\#	1	Manual setting of the mechanism settings	Prioritize ABZO setting
		2	Electronic gear A	1
		3	Electronic gear B	1
		4	Motor rotation direction	Positive direction=CW
		5	Mechanism type	step(Rotary)
		6	Mechanism lead pitch [mm]	1
		7		
		8	Gear ratio setting (prioritize 0.00:ABZO setting)	0.00
		9		
		10	Initial coordinate generation/wrap coordinate setting	Manual setting (use driver parameter)
	A	11	Initial coordinate generation \& wrap setting range [rev]	18.0
Operation		12	Initial coordinate generation \& wrap range offset ratio [\%]	0.00
$\underline{\underline{-} \text { Teaching. remote operation }}$		13	Initial coordinate generation \& round coordinate offset value [deg]	0.00
Monitor		14	Wrap setting	Effective

memo Set the gear ratio of your product used in the "Initial coordinate generation \& wrap setting range" parameter.
Operation mode

Wrap absolute positioning
(RND-ABS)

- Wpecifies the position coordinate
of the target position
- Movement within the wrap range

[^2]
3
 Motorized actuator equipped the AR Series

Table of contents

1 Setting of the motorized linear slide and motorized cylinder 34
1-1 Setting flow 34
1-2 Parameter setting example 35
1-3 Traveling direction of the moving part 45
1-4 Operation setting 46
1-5 Return-to-home operation 48
1-6 Push-motion return-to-home operation 49
1-7 Push-motion operation 52
1-8 Current setting of push-motion operation 53
2 Setting of the hollow rotary actuator 55
2-1 Setting flow 55
2-2 Parameter setting list 56
2-3 Rotation direction of output table 58
2-4 Operation setting 58
2-5 Return-to-home operation 59

1 Setting of the motorized linear slide and motorized cylinder

This chapter explains the parameters and operation functions of the motorized linear slide and motorized cylinder. (Hereinafter described as motorized actuator)

1-1 Setting flow

1 Install the motorized actuator.

2 Install and connect a driver.

3 Set parameters for the driver. (It is explained in this part.)

	Home operation parameter		
	- Home-seeking mode		Push mode
	- Starting speed of home-seeking [Hz]		1,000
	- Position offset of home-seeking [step]	EAS2, EAC2	200
	- Starting direction of	e-seeking	Negative direction (Return-to-home operation starts to the motor side)

Traveling direction

Coordinates parameter	
• Electronic gear A	10
\bullet Electronic gear B	3
- Motor rotation direction	Positive direction=CW (Moves to opposite the motor side)

4 Completion of setting

About the setting file for motorized actuators

The setting file, which the recommended parameters are input in advance to operate the linear slides and cylinders equipped the AR Series, is provided in the download page of the MEXEO2. Download the setting file suitable for the motorized actuator used.
Applicable product: EAS Series linear slide, EZS Series linear slide, EZSH Series linear slide, EAC Series cylinder
memo - The setting file is created based on the contents of this manual.

- The minimum travel amount is 0.01 mm .
- The positive software limit is not input since it varies depending on the stroke. Input the value of "(stroke $\times 100)+300$ " to the positive software limit before reading the setting file to the driver.

1-2 Parameter setting example

Built-in controller type

memo - Set the starting speed to $6 \mathrm{~mm} / \mathrm{s}$ or less.

- Set the operating speed by checking the specification of the maximum speed.
- In the case of the motorized actuator of the DC power input type, the operating speed may not reach the maximum speed depending on the ambient temperature or motor cable length.
- AC power input type products of the EAS6, EZS6, EZSH6, or EAC6 model; If a load is operated in a vertical direction, an overvoltage alarm may generate depending on the driving condition. When the alarm has generated, reconsider the operating condition or use our regeneration resistor.

Lead: 3 mm

A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value *1	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	3	-	3	-
- Resolution (Minimum travel amount [mm])	300 (0.01)	-	1,000 (0.003)	-
Operation data				
- Position [step]	1,000	10 [mm]	0	0 [mm]
- Operating speed [Hz]	10,000	100 [mm/s]	1,000	3 [mm/s]
- Acceleration (Deceleration) [ms/kHz] *2	1	$10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$3\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Operation parameter				
- JOG operating speed [Hz]	10,000	100 [mm/s]	1,000	3 [mm/s]
- Acceleration/deceleration rate of JOG [ms/kHz] *2	20	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$3\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- JOG starting speed [Hz]	600	6 [mm/s]	500	1.5 [mm/s]
Home operation parameter				
- Home-seeking mode	Push mode	-	3 -sensor mode	-
- Starting speed of home-seeking [Hz]	1,000	10 [mm/s]	500	1.5 [mm/s]
- Position offset of home-seeking [step]	200	2 [mm]	0	0 [mm]
- Starting direction of homeseeking	Negative direction (Return-to-home operation starts to the motor side)	-	Positive direction (Return-to-home operation starts to opposite the motor side)	-
Coordinates parameter				
- Electronic gear A	10	-	1	-
- Electronic gear B	3	-	1	-
- Motor rotation direction	Positive direction=CW (Moves to opposite the motor side)	-	Positive direction=CW (Moves to opposite the motor side)	-
- Positive software limit [step]	(Stroke $\times 100$) +300	Stroke + 3 [mm]	8,388,607	25,165.821 [mm]
- Negative software limit [step]	-200	-2 [mm]	-8,388,608	-25,165.824[mm]

*1 The values are the factory setting data or initialized data.
*2 When setting via RS-485 communication or industrial network, input integral number. Set by increasing the value calculated by the conversion formula to 1,000 times.

- Lead: 6 mm

A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item		Setting example		Initial value *1	
		Setting value	Converted value	Setting value	Converted value
- Lead [mm]		6	-	6	-
- Resolution (Minimum travel amount [mm])		600 (0.01)	-	1,000 (0.006)	-
Operation data					
- Position [step]		1,000	10 [mm]	0	0 [mm]
- Operating speed [Hz]		10,000	100 [mm/s]	1,000	6 [mm/s]
- Acceleration (Deceleration) [ms/kHz] *2		1	$10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$6\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Operation parameter					
- JOG operating speed [Hz]		10,000	100 [mm/s]	1,000	6 [mm/s]
- Acceleration/deceleration rate of JOG [ms/kHz] *2		20	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$6\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- JOG starting speed [Hz]		600	$6[\mathrm{~mm} / \mathrm{s}$]	500	3 [mm/s]
Home operation parameter					
- Home-seeking mode		Push mode	-	3 -sensor mode	-
- Starting speed of home-seeking [Hz]	EAS2, EAC2	1,000	10 [mm/s]	500	3 [mm/s]
	$\begin{aligned} & \text { EAS4, EAS6, } \\ & \text { EAC4, EAC6, } \\ & \text { EZS3, EZS4, } \\ & \text { EZS6 } \end{aligned}$	2,500	25 [mm/s]	500	3 [mm/s]
- Position offset of home-seeking [step]	EAS2, EAC2, EAC4, EAC6	200	2 [mm]	0	0 [mm]
	$\begin{aligned} & \text { EZS3, EZS4, } \\ & \text { EAS4 } \end{aligned}$	100	1 [mm]		
	EAS6, EZS6	400	4 [mm]		
- Starting direction of home-seeking		Negative direction (Return-to-home operation starts to the motor side)	-	Positive direction (Return-to-home operation starts to opposite the motor side)	-
Coordinates parameter					
- Electronic gear A		5	-	1	-
- Electronic gear B		3	-	1	-
- Motor rotation direction *3		Positive direction=CW (Moves to opposite the motor side)	-	Positive direction=CW (Moves to opposite the motor side)	-
- Positive software limit [step]		$($ Stroke $\times 100)+300$	Stroke + 3 [mm]	8,388,607	50,331.642 [mm]
- Negative software limit [step]		-200	-2 [mm]	-8,388,608	-50,331.648[mm]

*1 The values are the factory setting data or initialized data.
*2 When setting via RS-485 communication or industrial network, input integral number. Set by increasing the value calculated by the conversion formula to 1,000 times.
*3 This is the traveling direction of the moving part for the in-line motor mounting type. For the parallel motor mounting type, the moving part moves in the opposite direction of the in-line motor mounting type.

- Lead: 12 mm

A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item		Setting example		Initial value *1	
		Setting value	Converted value	Setting value	Converted value
- Lead [mm]		12	-	12	-
- Resolution (Minimum travel amount [mm])		1,200 (0.01)	-	1,000 (0.012)	-
Operation data					
- Position [step]		1,000	10 [mm]	0	0 [mm]
- Operating speed [Hz]		10,000	100 [mm/s]	1,000	12 [mm/s]
- Acceleration (Deceleration) [ms/kHz] *2		1	$10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$12\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Operation parameter					
- JOG operating speed [Hz]		10,000	100 [mm/s]	1,000	12 [mm/s]
- Acceleration/deceleration rate of JOG [ms/kHz] *2		20	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$12\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- JOG starting speed [Hz]		600	6 [mm/s]	500	6 [mm/s]
Home operation parameter					
- Home-seeking mode		Push mode	-	3 -sensor mode	-
- Starting speed of home-seeking [Hz]		2,500	25 [mm/s]	500	$6[\mathrm{~mm} / \mathrm{s}]$
- Position offset of home-seeking [step]	EAC4, EAC6	200	2 [mm]	0	0 [mm]
	$\begin{aligned} & \text { EZS3, EZS4, } \\ & \text { EAS4 } \end{aligned}$	100	1 [mm]		
	EAS6, EZS6	400	4 [mm]		
- Starting direction of home-seeking		Negative direction (Return-to-home operation starts to the motor side)	-	Positive direction (Return-to-home operation starts to opposite the motor side)	-
Coordinates parameter					
- Electronic gear A		5	-	1	-
- Electronic gear B		6	-	1	-
- Motor rotation direction *3		Positive direction=CW (Moves to opposite the motor side)	-	Positive direction=CW (Moves to opposite the motor side)	-
- Positive software limit [step]		(Stroke $\times 100$) +300	Stroke + 3 [mm]	8,388,607	100,663.284 [mm]
- Negative software limit [step]		-200	-2 [mm]	-8,388,608	-100,663.296 [mm]

*1 The values are the factory setting data or initialized data.
*2 When setting via RS-485 communication or industrial network, input integral number. Set by increasing the value calculated by the conversion formula to 1,000 times.
*3 This is the traveling direction of the moving part for the in-line motor mounting type. For the parallel motor mounting type, the moving part moves in the opposite direction of the in-line motor mounting type.

- Lead: 20 mm

A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value *1	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	20	-	20	-
- Resolution (Minimum travel amount [mm])	2,000 (0.01)	-	1,000 (0.02)	-
Operation data				
- Position [step]	1,000	10 [mm]	0	0 [mm]
- Operating speed [Hz]	10,000	100 [mm/s]	1,000	20 [mm/s]
- Acceleration (Deceleration) [ms/kHz] *2	1	$10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$20\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Operation parameter				
- JOG operating speed [Hz]	10,000	100 [mm/s]	1,000	20 [mm/s]
- Acceleration/deceleration rate of JOG [ms/kHz] *2	1	$10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$20\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- JOG starting speed [Hz]	600	$6[\mathrm{~mm} / \mathrm{s}]$	500	10 [mm/s]
Home operation parameter				
- Home-seeking mode	3 -sensor mode	-	3 -sensor mode	-
- Starting speed of home-seeking $[\mathrm{Hz}]$	2,500	25 [mm/s]	500	10 [mm/s]
- Starting direction of home-seeking	Negative direction (Return-to-home operation starts to the motor side)	-	Positive direction (Return-to-home operation starts to opposite the motor side)	-
Coordinates parameter				
- Electronic gear A	1	-	1	-
- Electronic gear B	2	-	1	-
- Motor rotation direction	Positive direction=CW (Moves to opposite the motor side)	-	Positive direction=CW (Moves to opposite the motor side)	-
- Positive software limit [step]	$($ Stroke $\times 100)+300$	Stroke + 3 [mm]	8,388,607	167,772.14 [mm]
- Negative software limit [step]	-200	-2 [mm]	-8,388,608	-167,772.16[mm]

*1 The values are the factory setting data or initialized data.
*2 When setting via RS-485 communication or industrial network, input integral number. Set by increasing the value calculated by the conversion formula to 1,000 times.

- Lead: 30 mm

A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

@DANGER

- Do not enter the moving range of the product while the power is supplied. Be sure to provide a safety cage according to EN ISO13857. If the motorized linear slide moved to unexpected directions or ran at unexpected speeds during operation, serious injury may result.
- Operate the data setter outside the safety cage. Failure to do so may result in injury.

- Item	Setting example		Initial value *1	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	30	-	30	-
- Resolution (Minimum travel amount [mm])	3,000 (0.01)	-	1,000 (0.03)	-
Operation data				
- Position [step]	1,000	10 [mm]	0	0 [mm]
- Operating speed [Hz]	10,000	100 [mm/s]	1,000	30 [mm/s]
- Acceleration (Deceleration) [ms/kHz] *2	1	$10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$30\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
Operation parameter				
- JOG operating speed [Hz]	10,000	100 [mm/s]	1,000	30 [mm/s]
- Acceleration/deceleration rate of JOG [ms/kHz] *2	1	$10\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	1	$30\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- JOG starting speed [Hz]	600	6 [mm/s]	500	15 [mm/s]
Home operation parameter				
- Home-seeking mode	3-sensor mode	-	3-sensor mode	-
- Starting speed of home-seeking [Hz]	2,500	25 [mm/s]	500	15 [mm/s]
- Starting direction of home-seeking	Negative direction (Return-to-home operation starts to the motor side)	-	Positive direction (Return-to-home operation starts to opposite the motor side)	-
Coordinates parameter				
- Electronic gear A	1	-	1	-
- Electronic gear B	3	-	1	-
- Motor rotation direction	Positive direction=CW (Moves to opposite the motor side)	-	Positive direction=CW (Moves to opposite the motor side)	-
- Positive software limit [step]	$($ Stroke $\times 100)+300$	Stroke + 3 [mm]	8,388,607	251,658.21 [mm]
- Negative software limit [step]	-200	-2 [mm]	-8,388,608	-251,658.24 [mm]

*1 The values are the factory setting data or initialized data.
*2 When setting via RS-485 communication or industrial network, input integral number. Set by increasing the value calculated by the conversion formula to 1,000 times.

- Pulse input type
memo - Set the starting speed to $6 \mathrm{~mm} / \mathrm{s}$ or less.
- Set the operating speed by checking the specification of the maximum speed.
- In the case of the motorized actuator of the DC power input type, the operating speed may not reach the maximum speed depending on the ambient temperature or motor cable length.
- AC power input type products of the EAS6, EZS6, EZSH6 or EAC6 model;

If a load is operated in a vertical direction, an overvoltage alarm may generate depending on the driving condition. When the alarm has generated, reconsider the operating condition or use our regeneration resistor.

Lead: 3 mm

A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value*	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	3	-	3	-
- Resolution (Minimum travel amount [mm])	300 (0.01)	-	1,000 (0.003)	-
Return to electrical home operation parameter				
- Operating speed of return to electrical home operation [r/min]	2,000	100 [mm/s]	30	3 [mm/s]
- Acceleration/deceleration rate of return to electrical home operation [ms/(1,000 r/min)]	100	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of return operation [r/min]	120	$6[\mathrm{~mm} / \mathrm{s}]$	30	3 [mm/s]
Manual operation parameter				
- JOG operating speed [r/min]	2,000	100 [mm/s]	30	3 [mm/s]
- Acceleration and deceleration rate of JOG operation [ms/(1,000 r/min)]	100	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of JOG operation [r/min]	120	$6[\mathrm{~mm} / \mathrm{s}]$	30	3 [mm/s]
Electronic gear parameter				
- Electronic gear A1	10	-	10	-
- Electronic gear B	3	-	10	-
Operation parameter				
- Motor rotation direction	Positive=CW (Moves to opposite the motor side)	-	Positive=CW (Moves to opposite the motor side)	-

* The values are the factory setting data or initialized data.

Lead: 6 mm
A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value *1	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	6	-	6	-
- Resolution (Minimum travel amount [mm])	600 (0.01)	-	1,000 (0.006)	-
Return to electrical home operation parameter				
- Operating speed of return to electrical home operation [r/min]	1,000	100 [mm/s]	30	3 [mm/s]
- Acceleration/deceleration rate of return to electrical home operation [ms/($1,000 \mathrm{r} / \mathrm{min})$]	200	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$1\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of return operation [r/min]	60	$6[\mathrm{~mm} / \mathrm{s}]$	30	3 [mm/s]
Manual operation parameter				
- JOG operating speed [r/min]	1,000	100 [mm/s]	30	3 [mm/s]
- Acceleration and deceleration rate of JOG operation [ms/(1,000 r/min)]	200	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$1\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of JOG operation [r/min]	60	$6[\mathrm{~mm} / \mathrm{s}]$	30	3 [mm/s]
Electronic gear parameter				
- Electronic gear A1	5	-	10	-
- Electronic gear B	3	-	10	-
Operation parameter				
- Motor rotation direction *2	Positive=CW (Moves to opposite the motor side)	-	Positive=CW (Moves to opposite the motor side)	-

*1 The values are the factory setting data or initialized data.
*2 This is the traveling direction of the moving part for the in-line motor mounting type. For the parallel motor mounting type, the moving part moves in the opposite direction of the in-line motor mounting type.

Lead: 12 mm
A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value *1	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	12	-	12	-
- Resolution (Minimum travel amount [mm])	1,200 (0.01)	-	1,000 (0.012)	-
Return to electrical home operation parameter				
- Operating speed of return to electrical home operation [r/min]	500	100 [mm/s]	30	6 [mm/s]
- Acceleration/deceleration rate of return to electrical home operation [ms/($1,000 \mathrm{r} / \mathrm{min}$)]	400	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$2\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of return operation [r/min]	30	$6[\mathrm{~mm} / \mathrm{s}]$	30	6 [mm/s]
Manual operation parameter				
- JOG operating speed [r/min]	500	100 [mm/s]	30	6 [mm/s]
- Acceleration and deceleration rate of JOG operation [ms/(1,000 r/min)]	400	$0.5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$2\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of JOG operation [r/min]	30	6 [mm/s]	30	6 [mm/s]
Electronic gear parameter				
- Electronic gear A1	5	-	10	-
- Electronic gear B	6	-	10	-
Operation parameter				
- Motor rotation direction *2	Positive=CW (Moves to opposite the motor side)	-	Positive=CW (Moves to opposite the motor side)	-

*1 The values are the factory setting data or initialized data.
*2 This is the traveling direction of the moving part for the in-line motor mounting type. For the parallel motor mounting type, the moving part moves in the opposite direction of the in-line motor mounting type.

Lead: 20 mm
A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value *	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	20	-	20	-
- Resolution (Minimum travel amount [mm])	2,000 (0.01)	-	1,000 (0.02)	-
Return to electrical home operation parameter				
- Operating speed of return to electrical home operation [r/min]	300	100 [mm/s]	30	10 [mm/s]
- Acceleration/deceleration rate of return to electrical home operation [ms/(1,000 r/min)]	166.6	$2\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$3.33\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of return operation [r/min]	18	$6[\mathrm{~mm} / \mathrm{s}]$	30	10 [mm/s]
Manual operation parameter				
- JOG operating speed [r/min]	300	100 [mm/s]	30	10 [mm/s]
- Acceleration and deceleration rate of JOG operation [ms/(1,000 r/min)]	166.6	$2\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$3.33\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of JOG operation [r/min]	18	$6[\mathrm{~mm} / \mathrm{s}]$	30	10 [mm/s]
Electronic gear parameter				
- Electronic gear A1	1	-	10	-
- Electronic gear B	2	-	10	-
Operation parameter				
- Motor rotation direction	Positive=CW (Moves to opposite the motor side)	-	Positive=CW (Moves to opposite the motor side)	-

* The values are the factory setting data or initialized data.
- Lead: 30 mm

A setting example of the parameter for when setting the minimum travel amount to 0.01 mm is shown next. \square represents parameters to be changed.

@DANGER

- Do not enter the moving range of the product while the power is supplied. Be sure to provide a safety cage according to EN ISO13857. If the motorized linear slide moved to unexpected directions or ran at unexpected speeds during operation, serious injury may result.
- Operate the data setter outside the safety cage. Failure to do so may result in injury.

Item	Setting example		Initial value *	
	Setting value	Converted value	Setting value	Converted value
- Lead [mm]	30	-	30	-
- Resolution (Minimum travel amount [mm])	3,000 (0.01)	-	1,000 (0.03)	-
Return to electrical home operation parameter				
- Operating speed of return to electrical home operation [r/min]	200	100 [mm/s]	30	15 [mm/s]
- Acceleration/deceleration rate of return to electrical home operation [ms/($1,000 \mathrm{r} / \mathrm{min}$)]	250	$2\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of return operation [r/min]	12	$6[\mathrm{~mm} / \mathrm{s}]$	30	15 [mm/s]
Manual operation parameter				
- JOG operating speed [r/min]	200	100 [mm/s]	30	15 [mm/s]
- Acceleration and deceleration rate of JOG operation [ms/(1,000 r/min)]	250	$2\left[\mathrm{~m} / \mathrm{s}^{2}\right]$	100	$5\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- Starting speed of JOG operation [r/min]	12	$6[\mathrm{~mm} / \mathrm{s}]$	30	15 [mm/s]
Electronic gear parameter				
- Electronic gear A1	1	-	10	-
- Electronic gear B	3	-	10	-
Operation parameter				
- Motor rotation direction	Positive=CW (Moves to opposite the motor side)	-	Positive=CW (Moves to opposite the motor side)	-

[^3]
1-3 Traveling direction of the moving part

The traveling direction of the moving part varies depending on the setting of the travel amount or the input method of the pulse signal.
©WARNING
Set various parameters such as the resolution and traveling direction before operating the motorized actuator. Operating the actuator without setting parameters may cause it to move to unexpected directions or run at unexpected speeds, leading to injury or damage to equipment.
Setting

Operation by setting of parameter
When setting the travel amount to the positive (+) side

Operation by pulse signal
2-pulse input mode
When inputting the pulse signal to the CW input
The table moves to
opposite the motor side.

When inputting the pulse signal to the PLS input while
the DIR input is ON.
Operation by setting of parameter
When setting the travel amount to the negative (-) side
Operation by pulse signal
2-pulse input mode mounting type
When inputting the pulse signal to the CCW input.
1-pulse input mode
When inputting the pulse signal to the PLS input while
the DIR input is OFF.

1-4 Operation setting

When the minimum travel amount, travel amount, operating speed, and acceleration/deceleration speed are set to the driver for the motorized actuator, the following calculation is required.
This section explains the motorized linear slide as an example.
Set various parameters such as the resolution and traveling direction before operating the motorized actuator. Operating the actuator without setting parameters may cause it to move to unexpected directions or run at unexpected speeds, leading to injury or damage to equipment.

- Minimum travel amount

The minimum travel amount can be changed using the driver switch or parameters. (electronic gear A, electronic gear B)

Minimum travel amount $(\mathrm{mm})=\frac{\text { Ball screw lead (mm) }}{\text { Motor resolution (P/R) }}$
Motor resolution $(P / R)=1,000 \times($ Electronic gear $B \div$ Electronic gear $A)$

- Setting example:

When setting the minimum travel amount to 0.01 mm for 6 mm lead of the motorized linear slide
Minimum travel amount $(\mathrm{mm})=\frac{6 \mathrm{~mm}}{\text { Motor resolution }(P / R)}=0.01 \mathrm{~mm}$
Motor resolution $(P / R)=\frac{6 \mathrm{~mm}}{0.01 \mathrm{~mm}}=600 \mathrm{P} / \mathrm{R}$
Motor resolution $(P / R)=1,000 \times($ Electronic gear $B \div$ Electronic gear $A)=600 P / R$
$\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{600}{1,000}=\frac{3}{5}$
When setting the minimum travel amount to 0.01 mm , set the electronic gear A to 5 and the electronic gear B to 3 .

Lead	Minimum travel amount	Motor resolution	Electronic gear A	Electronic gear B
3 mm	0.01 mm	$300 \mathrm{P} / \mathrm{R}$	10	3
6 mm	0.01 mm	$600 \mathrm{P} / \mathrm{R}$	5	3
12 mm	0.01 mm	$1,200 \mathrm{P} / \mathrm{R}$	5	6
20 mm	0.01 mm	$2,000 \mathrm{P} / \mathrm{R}$	1	2
30 mm	0.01 mm	$3,000 \mathrm{P} / \mathrm{R}$	1	3

Travel amount

The travel amount is set by number of pulses. For the built-in controller type, the position (step) is used instead of number of pulses.
Travel amount (mm) = Number of pulses (pulse) \times Minimum travel amount (mm)

- Setting example:

When the motorized linear slide which minimum travel amount is set to 0.01 mm is moved by 30 mm
Travel amount $(\mathrm{mm})=$ Number of pulses (pulse) $\times 0.01 \mathrm{~mm}=30 \mathrm{~mm}$
Number of pulses (pulse) $=\frac{30 \mathrm{~mm}}{0.01 \mathrm{~mm}}=3,000$ pulses
When moving the motorized linear slide by 30 mm , set 3,000 pulses.

Operating speed

The operating speed is set by the pulse speed. For the built-in controller type, the operating speed (Hz) is used instead of pulse speed.
Operating speed $(\mathrm{mm} / \mathrm{s})=$ Pulse speed $(\mathrm{Hz}) \times$ Minimum travel amount (mm)

- Setting example:

When the motorized linear slide which minimum travel amount is set to 0.01 mm is moved at the operating speed of $50 \mathrm{~mm} / \mathrm{s}$

Operating speed $(\mathrm{mm} / \mathrm{s})=$ Pulse speed $(\mathrm{Hz}) \times 0.01 \mathrm{~mm}=50 \mathrm{~mm} / \mathrm{s}$
Pulse speed $(\mathrm{Hz})=\frac{50 \mathrm{~mm} / \mathrm{s}}{0.01 \mathrm{~mm}}=5,000 \mathrm{~Hz}$
When moving the motorized linear slide at the operating speed of $50 \mathrm{~mm} / \mathrm{s}$, set $5,000 \mathrm{~Hz}$.

Acceleration/deceleration speed

The acceleration/deceleration speed is set by any of the acceleration/deceleration rate ($\mathrm{ms} / \mathrm{kHz}$), acceleration/ deceleration rate $[\mathrm{ms} /(1,000 \mathrm{r} / \mathrm{min})]$ or acceleration/deceleration time (s).
Acceleration/deceleration speed $\left(\mathrm{m} / \mathrm{s}^{2}\right)=\frac{\text { Minimum travel amount }(\mathrm{mm}) \times 1,000}{\text { Acceleration/deceleration rate }(\mathrm{ms} / \mathrm{kHz})}$
Acceleration/deceleration speed $\left(\mathrm{m} / \mathrm{s}^{2}\right)=\frac{\text { Lead }(\mathrm{mm}) \times 1,000}{60 \times \text { Acceleration/deceleration rate }[\mathrm{ms} /(1,000 \mathrm{r} / \mathrm{min})]}$
Acceleration/deceleration speed $\left(\mathrm{m} / \mathrm{s}^{2}\right)=\frac{\text { Operating speed }(\mathrm{mm} / \mathrm{s})}{\text { Acceleration/deceleration time }(\mathrm{s})}$

- Setting example:

When the motorized linear slide which minimum travel amount is set to 0.01 mm is moved at the operating speed of $10 \mathrm{~m} / \mathrm{s}^{2}$

Acceleration/deceleration speed $\left(\mathrm{m} / \mathrm{s}^{2}\right)=\frac{0.01 \mathrm{~mm} \times 1,000}{\text { Acceleration/deceleration rate }(\mathrm{ms} / \mathrm{kHz})}=10 \mathrm{~m} / \mathrm{s}^{2}$
Acceleration/deceleration rate $(\mathrm{ms} / \mathrm{kHz})=\frac{0.01 \mathrm{~mm} \times 1,000}{10 \mathrm{~m} / \mathrm{s}^{2}}=1 \mathrm{~ms} / \mathrm{kHz}$
When moving the motorized linear slide at the acceleration/deceleration speed of $10 \mathrm{~m} / \mathrm{s}^{2}$, set $1 \mathrm{~ms} / \mathrm{kHz}$.

1-5 Return-to-home operation

Return-to-home is an operation in which the reference point of positioning (home) is detected.
It is executed to return to the home from the present position when the time of power-on and upon completion of positioning operation.

Built-in controller type

For details, refer to the user manual of the built-in controller type. A sensor set is also provided as our product.

Item	Description	Features
3 -sensor mode	The motor operates at the "operating speed of homeseeking." When the ON edge of the HOME sensor is detected, the motor will stop and the stop position will be the home.	- Three external sensors are required. *4 - The operating speed is high. (operating speed of homeseeking)
2-sensor mode	The motor operates at the "starting speed of homeseeking." When the limit sensor is detected, the motor will rotate in the reverse direction and escape from the limit sensor. After escaping from the limit sensor, the motor will move 200 steps and stop, and then the stop position will be the home. *3	- Two external sensors are required. - The operating speed is low. (starting speed of home-seeking)
Push mode *1 *2	The motor operates at the "starting speed of homeseeking." When the moving part for the motor is pressed against a mechanical stopper etc., the motor will rotates in the reverse direction. After reversing, the motor will move 200 steps and stop, and then the stop position will be the home. *3	- No external sensor is required. - The operating speed is low. (starting speed of home-seeking)
Position preset	When executing the P-PRESET at the position that the motor stops, the command position will be the value of the "Preset position" parameter. The home can be set to any position.	- No external sensor is required. - The home can be set to any position.

*1 The offset setting is required according to an actuator.
*2 Do not perform push-motion return-to-home operation with the EZSH Series.
*3 It moves 200 steps regardless of resolution. Therefore, the actual travel distance may vary according to resolution.
*4 When multiple external sensors cannot be installed, the home can be detected with a single external sensor. In this case, connect the HOME sensor.

Sensor set

Sensor output	Applicable product		
	EAS Series	EZS Series	EZSH Series
NPN	PAES-S-2X, PAES-S-2Y		
	PAES-S-4X, PAES-S-4Y	PAES-S	PAES-S-6EZSH
	PAES-S-6X, PAES-S-6Y		
PNP	PAES-SY-2X, PAES-SY-2Y	PAES-SY	PAES-SY-6EZSH
	PAES-SY-4X, PAES-SY-4Y		
	PAES-SY-6X, PAES-SY-6Y		

Pusle input type

For details, refer to the user manual of the pulse input type.

Item	Description	Features
	When the RETURN input is turned ON, the motor will start a return to electrical home operation. The electrical home Return to electrical (position) refers to the motor position effective when the driver power is turned on, or the position when the P-PRESET input is turned ON.	• No external sensor is required. - The home can be set to any position.

1-6 Push-motion return-to-home operation

Push-motion return-to-home operation can be performed when the built-in controller type is used.

- Perform push-motion return-to-home operation in the specification range of the dynamic permissible moment. Failure to do so may result in injury or damage to equipment.
- EAC Series:

If push-motion return-to-home operation is performed in the direction opposite the motor side, provide an external mechanism where the rod can press within the effective stroke. Pressing in excess of the effective stroke may result in injury or damage to equipment.

- Set the value of the "position offset of home-seeking" for when performing push-motion operation to be larger than the "distance from the actuator end to the home." If push-motion return-to-home operation is performed with keeping the initial value (0), the moving part becomes a state of contacting the stop buffer that is installed for the impact buffer, leading to a negative effect on the stopping accuracy of return-to-home.
- Lead 6 mm type products of the EAS2 or EAC2 model:

If a load is operated in a vertical direction, perform push-motion return-to-home operation to the downward direction. The home may vary if you perform it to the upward direction.

- Lead 12 mm type products of the EAS4, EZS4 or EAC4 model: If a load is operated in a vertical direction, perform push-motion return-to-home operation to the upward direction with a load mass of 4 kg or less. If the load is exceeded 4 kg , the home may vary.

■ Movement of push-motion return-to-home operation

If push-motion return-to-home operation is performed with keeping the initial value (0) for the "Position offset of home-seeking" parameter, the position, where the moving part moves 200 steps in the reverse direction after pressing against the actuator end and stops, will be determined as the home.

1. When push-motion return-to-home operation is performed, the moving part moves toward the actuator end.
2. The moving part hits the actuator end.

Motorized linear slide

3. The moving part moves 200 steps in the reverse direction and stops.

Motorized cylinder

AR Builtin Controller [AC] Data Operation data Parameter I/O Motor Operation Home operation Alarm Waming Coordinates Common I/O function[lnput]	Operation data Home operation	
	Home-seeking mode	Push mode
	Operating speed of home-seeking [Hz]	1000
	Acceleration/deceleration of home-seeking [ms/kHz] or [s]	1.000
	Starting speed of home-seeking [Hz$]$	500
	Position offset of home-seeking [step]	0
	Starting direction of home-seeking	Positive direction
	SLIT detection with home-seeking	Disable
	TIM signal detection with home-seeking	Disable
	Operating current of home-seeking with push-motion [\%]	100.0

- Position offset of push-motion return-to-home operation

Set the value of the "position offset of home-seeking" for when performing push-motion operation to be larger than the "distance from the actuator end to the home." If push-motion return-to-home operation is performed with keeping the initial value (0), the moving part becomes a state of contacting the stop buffer that is installed for the impact buffer, leading to a negative effect on the stopping accuracy of return-to-home.

Series	Model	Distance from the actuator end to the home
EAS	$\mathbf{2}$	4 mm
	$\mathbf{4}$	3 mm
	$\mathbf{6}$	6 mm
EZS	$\mathbf{3 , 4}$	3 mm
	$\mathbf{6}$	6 mm
EAC	$\mathbf{2 , 4 , 6}$	4 mm

Motorized linear slide

Motorized cylinder

Setting example:

When the distance from the actuator end to the home is set to 3 mm while the minimum travel amount of the motorized linear slide is 0.01 mm
Distance from the actuator end to the home $(\mathrm{mm})=[200+$ offset value (step) $\times 0.01 \mathrm{~mm}=3 \mathrm{~mm}$ Therefore, offset value $=100$ steps

AR Built-in Controller [AC] Data -... Operation data -1. Parameter	Operation data Home operation	
	Home-seeking mode	Push mode
	Operating speed of home-seeking [Hz]	1000
- 1/0	Acceleration/deceleration of home-seeking [ms/kHz] or [s]	1.000
otor	Stating speed of home-seeking [Hz]	500
Home operation	Position offset of home-seeking [step]	100
Alarm	Starting direction of home-seeking	Positive direction
Waming	SLIT detection with home-seeking	4 Disable
Coordinates	TIM signal detection with home-seeking	Disable
I/O function[lnput]	Operating current of home-seeking with push-motion [\%]	100.0

If the "Position offset of home-seeking" is set to 100 steps, the motor moves 300 steps $(3 \mathrm{~mm})$ in the reverse direction and stops.

■ Operating speed of push-motion return-to-home operation
The upper limit value of the push-motion return-to-home speed is shown next.

Series	Model	Upper limit of push-motion return-to-home speed
EAS	$\mathbf{2}$	$10 \mathrm{~mm} / \mathrm{s}$
	$\mathbf{4 , 6}$	$25 \mathrm{~mm} / \mathrm{s}$
EAC	$\mathbf{2}$	$10 \mathrm{~mm} / \mathrm{s}$
	$\mathbf{4 , 6}$	$25 \mathrm{~mm} / \mathrm{s}$
EZS	$\mathbf{3 , 4 , 6}$	$25 \mathrm{~mm} / \mathrm{s}$

Setting of the operating current of push-motion return-to-home operation (push force)

When performing push-motion return-to-home operation, you can set the push force to the actuator end using the "Operating current of home-seeking with push-motion" parameter. Set according to the recommended value in the table next.

Note Be sure to set the operating current of push-motion return-to-home operation to less than the recommended value. Performing push-motion return-to-home operation with the current value exceeding the recommended value may cause damage to the actuator or equipment. This may also cause deterioration in actuator specification.

1. When push-motion return-to-home operation is performed, the moving part moves toward the actuator end.
2. The moving part hits the actuator end.

The push force can be changed by adjusting the operating current of push-motion return-to-home operation.

Motorized linear slide

Motorized cylinder

- Recommended value for operating current of push-motion return-to-home operation

AC power input type

Series	Model	Lead	Operating current of push-motion return-to-home operation
EAS	4	$6 \mathrm{~mm}, 12 \mathrm{~mm}$	100\%
	6	6 mm	55\%
		12 mm	85\%
EAC	4	$6 \mathrm{~mm}, 12 \mathrm{~mm}$	100\%
	6	6 mm	55\%
		12 mm	85\%
EZS	3,4	$6 \mathrm{~mm}, 12 \mathrm{~mm}$	100\%
	6	6 mm	55\%
		12 mm	85\%

DC power input type

Series	Model	Lead	Operating current of push-motion return-to-home operation
EAS	2	$3 \mathrm{~mm}, 6 \mathrm{~mm}$	100\%
	4	$6 \mathrm{~mm}, 12 \mathrm{~mm}$	100\%
	6	6 mm	80\%
		12 mm	100\%
EAC	2	$3 \mathrm{~mm}, 6 \mathrm{~mm}$	100\%
	4	$6 \mathrm{~mm}, 12 \mathrm{~mm}$	100\%
	6	6 mm	80\%
		12 mm	100\%
EZS	3,4	$6 \mathrm{~mm}, 12 \mathrm{~mm}$	100\%
	6	6 mm	80\%
		12 mm	100\%

AR Built-in Controller [AC] Data Operation data .. Parameter	Operation data Home operation	
	Home-seeking mode	Push mode
	Operating speed of home-seeking [Hz]	1000
1/0	Acceleration/deceleration of home-seeking [$\mathrm{ms} / \mathrm{kHz}$] or [s]	1.000
. Motor	Starting speed of home-seeking [Hz]	500
Home operation	Position offset of home-seeking [step]	100
... Alarm	Starting direction of home-seeking	Positive direction
... Waming	SLIT detection with home-seeking	Disable
Coordinates	TIM signal detection with home-seeking	Disable
I/O function[Input]	Operating current of home-seeking with push-motion [\%]	85.0

1-7 Push-motion operation

The push force for push-motion operation is set using the push current.
Note Be sure to set the push current so that the upper limit value is not exceeded. Performing pushmotion operation with the current value exceeding the upper limit value may cause damage to the actuator or equipment. This may also cause deterioration in actuator specification.

Series	Model	Lead	Maximum push force
$\begin{aligned} & \text { EAS } \\ & \text { EAC } \end{aligned}$	2	3 mm	80 N
		6 mm	40 N
	4	6 mm	200 N
		12 mm	100 N
	6	6 mm	500 N
		12 mm	400 N
EZS	3,4	6 mm	200 N
		12 mm	100 N
	6	6 mm	500 N
		12 mm	400 N
EZSH	6	20 mm	325 N
		30 mm	220 N

1-8 Current setting of push-motion operation

The reference value of the push current is shown next. Check the actual push force using the product.
memo The relationship between the push force and push current varies depending on the following conditions. Check the actual push force using the equipment.

- Installation direction of the actuator (horizontal direction installation, vertical direction installation)
- Type of the motorized cylinder (motorized cylinder without a guided-shaft or with guided-shafts, stroke)
- Customer's load condition such as jig
- Cable length
- Ambient temperature
- Measurement result of the push force when the EAS/EZS/EAC Series is operated in the horizontal direction (average value)

EAS2, EAC2

EAS6, EZS6, EAC6

EZS3, EZS4, EAS4, EAC4

EAS6, EZS6, EAC6

- Measurement result of the push force when the EZSH Series is operated in the horizontal direction (average value)

Push speed

The upper limit value of the push speed is shown next.

Series	Model	Upper limit of push speed
EAS	$\mathbf{2}$	$10 \mathrm{~mm} / \mathrm{s}$
	$\mathbf{4 , 6}$	$25 \mathrm{~mm} / \mathrm{s}$
EAC	$\mathbf{2}$	$10 \mathrm{~mm} / \mathrm{s}$
	$\mathbf{4 , 6}$	$25 \mathrm{~mm} / \mathrm{s}$
EZS	$\mathbf{3 , 4 , 6}$	$25 \mathrm{~mm} / \mathrm{s}$
EZSH	$\mathbf{6}$	$25 \mathrm{~mm} / \mathrm{s}$

2 Setting of the hollow rotary actuator

This chapter explains the parameters and operation functions of the hollow rotary actuator. (Hereinafter described as motorized actuator)

2-1 Setting flow

1 Install the motorized actuator.

2 Install and connect a driver.

3 Set parameters for the driver. (It is explained in this part.)

4 Completion of setting

2-2 Parameter setting list

Built-in controller type

A setting example of the parameter for when setting the minimum step angle to 0.1° is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value *	
	Setting value	Converted value	Setting value	Converted value
- Step angle per revolution [${ }^{\circ}$]	360	-	360	-
- Resolution of output table (minimum step angle [] $]$)	3,600 (0.1)	-	18,000 (0.02)	-
- Gear reduction ratio of output table	18	-	18	-
Operation parameter				
- JOG operating speed [Hz]	1,000	100 [deg/s]	1,000	20 [deg/s]
- Acceleration/deceleration rate of JOG [ms/kHz]	1	-	1	-
- JOG starting speed [Hz]	500	50 [deg/s]	500	10 [deg/s]
Home operation parameter				
- Home-seeking mode	3-sensor mode	-	3-sensor mode	-
- Operating speed of home-seeking [Hz]	1,000	100 [deg/s]	1,000	20 [deg/s]
- Acceleration/deceleration of home-seeking [ms/kHz]	1	-	1	-
- Starting speed of home-seeking [Hz]	500	50 [deg/s]	500	10 [deg/s]
Coordinates parameter				
- Electronic gear A	5	-	1	-
- Electronic gear B	1	-	1	-
- Motor rotation direction	Positive direction=CCW	-	Positive direction=CW	-

* The values are the factory setting data or initialized data.

Note Do not perform push-motion operation or push-motion return-to-home operation with the DGII Series. Performing these operations may cause damage to the motorized actuator.

Pulse input type

A setting example of the parameter for when setting the minimum step angle to 0.1° is shown next.
\square represents parameters to be changed.

Item	Setting example		Initial value*	
	Setting value	Converted value	Setting value	Converted value
- Step angle per revolution []	360	-	360	-
- Resolution of output table (minimum step angle [$\left.{ }^{\circ}\right]$)	3,600 (0.1)	-	18,000 (0.02)	-
- Gear reduction ratio of output table	18	-	18	-
Manual operation parameter				
- JOG operating speed [r/min]	30	10 [deg/s]	30	10 [deg/s]
- Acceleration and deceleration rate of JOG operation [ms/(1,000r/min)]	100	-	100	-
- Starting speed of JOG operation [r/min]	30	10 [deg/s]	30	10 [deg/s]
Electronic gear parameter				
- Electronic gear A1	5	-	10	-
- Electronic gear B	1	-	10	-
Operation parameter				
- Motor rotation direction	Positive=CCW	-	Positive=CW	-

* The values are the factory setting data or initialized data.

Note Do not perform push-motion operation with the DGII Series. Performing push-motion operation may cause damage to the motorized actuator.

2-3 Rotation direction of output table

The rotation direction of the output table varies depending on the setting of the travel amount or the input method of the pulse signal.

Set various parameters such as the resolution and rotation direction before operating the motorized actuator. Operating the motorized actuator without setting parameters may cause it to move to unexpected directions or run at unexpected speeds, leading to injury or damage to equipment.
Setting

Operation by setting of parameter
When setting the step angle to the positive (+) side

Operation by pulse signal
- 2-pulse input mode
When inputting the pulse signal to the CW input
- 1-pulse input mode
When inputting the pulse signal to the PLS input
while the DIR input is ON.

Operation by setting of parameter
When setting the step angle to the negative (-) side side)

Operation by pulse signal
- 2-pulse input mode
When inputting the pulse signal to the CCW input.
- 1-pulse input mode
When inputting the pulse signal to the PLS input
while the DIR input is OFF.

2-4 Operation setting

The factory setting of the minimum step angle is 0.02° (the resolution of the output table is 18,000).
The minimum step angle can be set using the resolution switches of the driver or parameters. (electronic gear A, electronic gear B) Refer to the user manual for how to set the resolution using the electronic gears.
Setting example (common to drivers of the built-in controller type and pulse input type)

	Output table		Motor		Setting example for MEXE02	
	Minimum step angle	Resolution	Minimum step angle	Resolution	Electronic gear A	Electronic gear B
Initial value	0.02°	18,000 P/R	0.36°	1,000 P/R	The setting is not required.	
Resolution switches *	$0.04{ }^{\circ}$	9,000 P/R	$0.72{ }^{\circ}$	$500 \mathrm{P} / \mathrm{R}$		
	0.004°	90,000 P/R	0.072°	5,000 P/R		
	0.002°	180,000 P/R	0.036°	10,000 P/R		
Setting example	0.01°	36,000 P/R	$0.18{ }^{\circ}$	2,000 P/R	1	2
	0.1°	3,600 P/R	$1.8{ }^{\circ}$	200 P/R	1,800 (180) *	360 (36) *

* This is only available to the pulse input type driver.

The calculation formula of the resolution is as follows.

When the minimum step angle of output table is set to 0.1°

$\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{360}{1,800}$

Therefore, set the electronic gear A to 1,800 and the electronic gear B to 360 .
In the case of the pulse input type, since the setting range of the "Electronic gear" parameter is 1 to 1,000 , reduce the setting to values within the setting range.

2-5 Return-to-home operation

With the built-in controller type driver, return-to-home operation can be performed using a sensor installed externally. Set the "Home-seeking mode" parameter to 3 -sensors mode to start return-to-home operation. In addition, the high accuracy home detection is possible using the SLIT input and/or TIM signal.
A home sensor set is also provided as our product. Refer to p. 60 .

- When concurrently using the SLIT input and/or TIM signal

With the ON edge of the HOME sensor (home) is detected, the operation is continued until the external signal (SLIT input or TIM signal) is detected. The return-to-home operation will be complete when the external signal (SLIT input or TIM signal) is detected while the HOME sensor is being ON.

- Operation sequence (3-sensor mode)
- Explanation of alphabetical code VS: Starting speed of home-seeking
VR: Operating speed of home-seeking
VL: Last speed of return-to-home (When VS < 500 Hz : VS, When VS $\geq 500 \mathrm{~Hz}: 500 \mathrm{~Hz}$)
- - - Broken line indicates a home offset move.

Home detection signal	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
SLIT input		
TIM signal		
SLIT input and TIM signal		

Home sensor set

Sensor output	Applicable product	
	DG60	DG85R DG130R DG200R
	PADG-SA	PADG-SB
PNP	PADG-SAY	PADG-SBY

4 Motorized actuator equipped the RKII Series

Table of contents

1 Setting of the hollow rotary actuator 62
1-1 Setting flow 62
1-2 Parameter setting list 63
1-3 Rotation direction of output table 64
1-4 Operation setting 64
1-5 Return-to-home operation 66

1 Setting of the hollow rotary actuator

This chapter explains the parameters and operation functions of the hollow rotary actuator. (Hereinafter described as motorized actuator)

1-1 Setting flow

1 Install the motorized actuator.

2 Install and connect a driver.

4 Completion of setting

1-2 Parameter setting list

Built-in controller type

A setting example of the parameter for when setting the minimum step angle to 0.1° is shown next. \square represents parameters to be changed.

Item	Setting example		Initial value *	
	Setting value	Converted value	Setting value	Converted value
- Step angle per revolution [${ }^{\circ}$]	360	-	360	-
- Resolution of output table (minimum step angle [] $]$)	3,600 (0.1)	-	9,000 (0.04)	-
- Gear reduction ratio of output table	18	-	18	-
Operation parameter				
- JOG operating speed [Hz]	1,000	100 [deg/s]	1,000	40 [deg/s]
- JOG acceleration [ms/kHz]	30	-	30	-
- JOG starting speed [Hz]	100	10 [deg/s]	100	4 [deg/s]
Home operation parameter				
- Home-seeking mode	3-sensor mode	-	3-sensor mode	-
- Operating speed of home-seeking [Hz]	1,000	100 [deg/s]	1,000	40 [deg/s]
- Acceleration/deceleration of home-seeking [ms/kHz]	30	-	30	-
- Starting speed of home-seeking [Hz]	100	10 [deg/s]	100	4 [deg/s]
Coordinates parameter				
- Electronic gear A	5	-	1	-
- Electronic gear B	2	-	1	-
- Motor rotation direction	Positive direction=CCW	-	Positive direction=CW	-

* The values are the factory setting data or initialized data.

1-3 Rotation direction of output table

The rotation direction of the output table varies depending on the setting of the travel amount or the input method of the pulse signal.

Set various parameters such as the resolution and rotation direction before operating the motorized actuator. Operating the motorized actuator without setting parameters may cause it to move to unexpected directions or run at unexpected speeds, leading to injury or damage to equipment.
Setting
Operation by setting of parameter
When setting the step angle to the positive (+) side
Operation by pulse signal

- 2-pulse input mode
When inputting the pulse signal to the CW input
1-pulse input mode
When inputting the pulse signal to the PLS input
while the DIR input is ON.
Operation by setting of parameter
When setting the step angle to the negative (-) side
Operation by pulse signal
- 2-pulse input mode
When inputting the pulse signal to the CCW input.
1-pulse input mode
When inputting the pulse signal to the PLS input
while the DIR input is OFF.

1-4 Operation setting

Built-in controller type

The factory setting of the minimum step angle is 0.04° (the resolution of the output table is 9,000). The minimum step angle can be set using the "Electronic gear A," "Electronic gear B" parameters. Refer to the user manual for how to set the resolution using the electronic gears.

Setting example

| | Output table | | Motor | | Setting example for
 MEXE02 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Minimum step
 angle | Resolution | Minimum step
 angle | Resolution | Electronic
 gear A | Electronic
 gear B |
| | 0.04° | $9,000 \mathrm{P} / \mathrm{R}$ | 0.72° | $500 \mathrm{P} / \mathrm{R}$ | The setting is not required. | |
| Setting example | 0.01° | $36,000 \mathrm{P} / \mathrm{R}$ | 0.18° | $2,000 \mathrm{P} / \mathrm{R}$ | 1 | 4 |
| | 0.1° | $3,600 \mathrm{P} / \mathrm{R}$ | 1.8° | $200 \mathrm{P} / \mathrm{R}$ | 5 | 2 |

The calculation formula of the resolution using the electronic gears is as follows.

Minimum step angle of output table (${ }^{\circ}$)
$=\frac{360^{\circ}}{18(\text { Gear ratio }) \times 500 \times(\text { Electronic gear } B \div \text { Electronic gear A })}=0.1^{\circ}$
$\frac{\text { Electronic gear } B}{\text { Electronic gear } A}=\frac{2}{5}$
When setting the minimum step angle of the output table to 0.1°, set the electronic gear A to 5 and the electronic gear B to 2 .

Pulse input type

The minimum step angle can be set using the step angle setting switche (STEP) of the driver.
The factory setting of the minimum step angle is 0.04° (the resolution of the output table is 9,000).

- Function setting switch (SW1-No.1): When R1 is selected

Step angle setting switch (STEP) dial setting	Minimum step angle	Motor resolution	Motor step angle
0	0.04°	$500 \mathrm{P} / \mathrm{R}$	0.72°
1	0.02°	$1,000 \mathrm{P} / \mathrm{R}$	0.36°
2	0.016°	$1,250 \mathrm{P} / \mathrm{R}$	0.288°
3	0.01°	$2,000 \mathrm{P} / \mathrm{R}$	0.18°
4	0.008°	$2,500 \mathrm{P} / \mathrm{R}$	0.144°
5	0.005°	$4,000 \mathrm{P} / \mathrm{R}$	0.09°
6	0.004°	$5,000 \mathrm{P} / \mathrm{R}$	0.072°
7	0.002°	$10,000 \mathrm{P} / \mathrm{R}$	0.036°
8	0.0016°	$12,500 \mathrm{P} / \mathrm{R}$	0.0288°
9	0.001°	$20,000 \mathrm{P} / \mathrm{R}$	0.018°
A	0.0008°	$25,000 \mathrm{P} / \mathrm{R}$	0.0144°
B	0.0005°	$40,000 \mathrm{P} / \mathrm{R}$	0.009°
C	0.0004°	$50,000 \mathrm{P} / \mathrm{R}$	0.0072°
D	0.00032°	$62,500 \mathrm{P} / \mathrm{R}$	0.00576°
E	0.0002°	$100,000 \mathrm{P} / \mathrm{R}$	0.0036°
F	0.00016°	$125,000 \mathrm{P} / \mathrm{R}$	0.00288°

- Function setting switch (SW1-No.1): When R2 is selected

Step angle setting switch (STEP) dial setting	Minimum step angle	Motor resolution	Motor step angle
0	0.1°	200 P/R	1.8°
1	0.05°	400 P/R	$0.9{ }^{\circ}$
2	$\frac{0.6}{18}\left(0.0333 \ldots{ }^{\circ}\right)$	600 P/R	$0.6{ }^{\circ}$
3	0.025°	800 P/R	0.45°
4	$\frac{0.3}{18}\left(0.0166 \ldots{ }^{\circ}\right.$)	1,200 P/R	0.3°
5	0.0125°	1,600 P/R	0.225°
6	0.00625°	3,200 P/R	0.1125°
7	$\frac{0.06}{18}\left(0.00333 \ldots{ }^{\circ}\right.$)	6,000 P/R	0.06°
8	0.003125°	6,400 P/R	0.05625°
9	$\frac{0.05}{18}\left(0.00277 \ldots{ }^{\circ}\right.$)	7,200 P/R	0.05°
A	0.0025°	8,000 P/R	0.045°
B	$\frac{0.03}{18}\left(0.00166 \ldots{ }^{\circ}\right)$	12,000 P/R	0.03°
C	0.0015625°	12,800 P/R	0.028125°
D	0.00125°	16,000 P/R	0.0225°
E	0.00078125°	25,600 P/R	0.0140625°
F	0.0001°	200,000 P/R	0.0018°

1-5 Return-to-home operation

With the built-in controller type driver, return-to-home operation can be performed using a sensor installed externally. Set the "Home-seeking mode" parameter to 3 -sensors mode to start return-to-home operation. In addition, the high accuracy home detection is possible using the SLIT input and/or TIM signal. A home sensor set is also provided as our product.

■ When concurrently using the SLIT input and/or TIM signal

With the the ON edge of the HOME sensor (home) is detected, the operation is continued until the external signal (SLIT input or TIM signal) is detected. The return-to-home operation will be complete when the external signal (SLIT input or TIM signal) is detected while the HOME sensor is being ON.

- Operation sequence (3-sensor mode)
- Explanation of alphabetical code

VS: Starting speed of home-seeking
VR: Operating speed of home-seeking
VL: Last speed of return-to-home (When VS $<500 \mathrm{~Hz}$: VS, When VS $\geq 500 \mathrm{~Hz}: 500 \mathrm{~Hz}$)

- - - Broken line indicates a home offset move.

Home detection signal	Starting direction of return-to-home operation: Positive side	Starting direction of return-to-home operation: Negative side
SLIT input		
TIM signal		
SLIT input and TIM signal		

Home sensor set

Sensor output	Model
NPN	PADG-SB
PNP	PADG-SBY

- Unauthorized reproduction or copying of all or part of this Manual is prohibited. If a new copy is required to replace an original manual that has been damaged or lost, please contact your nearest Oriental Motor sales office.
- Oriental Motor shall not be liable whatsoever for any problems relating to industrial property rights arising from use of any information, circuit, equipment or device provided or referenced in this manual.
- Characteristics, specifications and dimensions are subject to change without notice.
- While we make every effort to offer accurate information in the manual, we welcome your input. Should you find unclear descriptions, errors or omissions, please contact your nearest Oriental Motor sales office.
- Orientalmotor and ABZO sensor are registered trademarks or trademarks of Oriental Motor Co., Ltd., in Japan and other countries.
Other product names and company names mentioned in this manual may be registered trademarks or trademarks of their respective companies and are hereby acknowledged. The third-party products mentioned in this manual are recommended products, and references to their names shall not be construed as any form of performance guarantee. Oriental Motor is not liable whatsoever for the performance of these third-party products.
© Copyright ORIENTAL MOTOR CO., LTD. 2015
Published in December 2021
- Please contact your nearest Oriental Motor office for further information.

ORIENTAL MOTOR U.S.A. CORP.
Technical Support Tel:800-468-3982
8:30am EST to 5:00pm PST (M-F)
www.orientalmotor.com
ORIENTAL MOTOR (EUROPA) GmbH
Schiessstraße 44, 40549 Düsseldorf, Germany
Technical Support Tel:00 800/22 556622 www.orientalmotor.de

ORIENTAL MOTOR (UK) LTD.
Unit 5 Faraday Office Park, Rankine Road, Basingstoke, Hampshire RG24 8QB UK
Tel:+44-1256347090
www.oriental-motor.co.uk
ORIENTAL MOTOR (FRANCE) SARL
Tel:+33-1 47869750 www.orientalmotor.fr

ORIENTAL MOTOR ITALIA s.r.I.
Tel:+39-02-93906347
www.orientalmotor.it

ORIENTAL MOTOR ASIA PACIFIC PTE. LTD Singapore
Tel:1800-842-0280
www.orientalmotor.com.sg
ORIENTAL MOTOR (MALAYSIA) SDN. BHD.
Tel:1800-806-161
www.orientalmotor.com.my
ORIENTAL MOTOR (THAILAND) CO., LTD.
Tel:1800-888-881
www.orientalmotor.co.th
ORIENTAL MOTOR (INDIA) PVT. LTD.
Tel:1800-120-1995 (For English)
1800-121-4149 (For Hindi)
www.orientalmotor.co.in
TAIWAN ORIENTAL MOTOR CO., LTD.
Tel:0800-060708
www.orientalmotor.com.tw
SHANGHAI ORIENTAL MOTOR CO., LTD.
Tel:400-820-6516
www.orientalmotor.com.cn

INA ORIENTAL MOTOR CO., LTD. Korea
Tel:080-777-2042
www.inaom.co.kr
ORIENTAL MOTOR CO., LTD.
4-8-1 Higashiueno, Taito-ku, Tokyo 110-8536 Japan
Tel:+81-3-6744-0361
www.orientalmotor.co.jp

[^0]: 8 Check the movement of the motorized actuator.
 Using the "Teaching, remote operation" of the MEXEO2, check the movement of the motorized actuator.

[^1]: Note
 Do not perform push-motion operation or push-motion return-to-home operation with the DGII Series.

[^2]: 2 Motorized actuator equipped the AZ Series

[^3]: * The values are the factory setting data or initialized data.

